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Building a Balancing Robot 
with the 

IntelliBrain™ Robotics Controller 
and 

Lego® Bricks 

 

Introduction 
Who says building a balancing robot has to be expensive and difficult?  With just 
two inexpensive infrared photoreflectors, an IntelliBrain™ robotics controller and 
a handful of Lego® parts you can build and program your own balancing robot 
(“BalanceBot”) before you know it! 

Theory of Operation 
The balancing robot shown above is a highly unstable two wheeled robot.  The 
largest mass, the battery pack, is positioned above the axle, making the robot an 
inverted pendulum.  The robot will naturally tend to tip over, and, the further it 
tips, the stronger the force causing it to tip over.    

Unlike the Weebles toys that were marketed several decades ago, “Weebles 
wobble but they don’t fall down!” the BalanceBot will not wobble, it will just 
quickly fall down without a feedback control system to stabilize it.  While this 
sounds like a difficult problem that would require a gyroscope or accelerometers 
and programming advanced algorithms, it is amazingly easy and can be 
accomplished with just two inexpensive Fairchild QRB1134 photoreflectors, an 
IntelliBrain robotics controller and a short Java™ program.   

The key to keeping the BalanceBot upright is the ability to measure the robot’s 
lean, allowing the control software to power the motors in a way that will 
eliminate all but the slightest lean. 
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Figure 1 - BalanceBot Side View 

Measuring the BalanceBot’s Lean 
The BalanceBot uses two Fairchild QRB1134 infrared photoreflector sensors 
mounted about ½ inch above the ground and equidistant from the axle, as shown 
in Figure 1, to measure how far it is leaning, if at all.  These sensors measure 
reflectivity and are sensitive to the color and texture of the floor.  By taking the 
difference in the readings of two sensors mounted equidistant from the axle 
centerline, the BalanceBot can determine the direction and magnitude of its lean.  
Assuming the floor has a uniform color and texture taking the difference of the 
sensor readings will factor out most of the characteristics of the floor, generating 
a value that is nearly proportional to the robot’s lean.  The difference between the 
sensor readings will be near zero when the robot is perfectly upright.  If the 
BalanceBot is leaning, the difference will be positive or negative depending on 
the direction of its lean.  The magnitude of the difference will increase as the lean 
increases.  Built-in variations in the sensor readings due to differences in 
mounting height and sensor differences are cancelled out by the software by 
using the IntelliBrain controller’s thumbwheel to calibrate the set point (difference 
measurement) that corresponds to the BalanceBot being perfectly upright. 
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Keeping the BalanceBot Upright 
The software running on the IntelliBrain controller is responsible for keeping the 
BalanceBot upright.  The software uses a Proportional-Integral-Differential (PID) 
control algorithm to do this.  The software measures the lean then inputs it into 
PID control algorithm to determine how to power the motors in order to stabilize 
the robot and stand it upright.      

As its name suggests, the PID algorithm consists of a three part equation with 
proportional (P), integral (I), and differential (D) terms.  These terms determine 
the controller output (power to the motors) from its input signal (the difference 
between the two sensor readings).  
The proportional term increases the motor power as the BalanceBot leans further 
over and decreases the motor power as the BalanceBot approaches the upright 
position.  A gain factor, pGain, determines how much power to apply to the 
motors for any given lean, as follows:  

proportionalTerm = -pGain * sensorDifference;  

While the proportional term is effective at responding to the lean, once the 
BalanceBot reaches the upright position it will proceed to tip in the opposite 
direction until the proportional control term increases the motor power enough to 
reverse the robot’s motion, rotating it back in the other direction.  The robot will 
oscillate back and forth, just as a car with worn out shock absorbers bounces for 
a long time when the car goes over a bump.  

The differential term of the PID algorithm acts as a damper reducing oscillation.  
This term resists rotation with a resistance proportional to the speed of rotation.  
Another gain factor, dGain, determines how much power is applied to the motors 
in the opposite direction of motion according to the following equation:  

differentialTerm = dGain * (previousDifference - sensorDifference);  

The previousDifference is the difference in sensor readings on previous 
iteration of the control algorithm.  

Finally, neither the proportional nor differential terms of the algorithm will remove 
all of the lean because both terms go to zero as the orientation of the robot 
settles near vertical.  The integral term sums the accumulated error (sensor 
differences summed over time) and applies power in the opposite direction 
indicated by the sum to drive the lean to zero, as follows  

integralTerm = -iGain * sumOfDifferences;  

The output of the control algorithm at any point in time is the sum of these terms:  

motorPower = proportionalTerm + integralTerm + differentialTerm;  
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Rather than implementing this algorithm directly, the BalanceBot example 
application uses the PIDController class from the RoboJDE class library.  All 
the BalanceBot application has to do is specify the gain constants when 
constructing the PIDController and then call the control() method at 
regular intervals.  The BalanceBot uses a high priority thread to run the PID 
controller while running the user interface at a lower priority.   This allows the 
BalanceBot to display data on the LCD screen and take input from the 
thumbwheel without interfering with its ability to maintain its balance. 

Building the BalanceBot 

Parts List 
Controller 

 

IntelliBrain controller with expansion board  

Sensors 

 

2 Fairchild QRB1134 infrared sensors with Molex connectors  

Lego® Parts 

 

4 1 x 10 plates 

 

1 2 x 8 plate 

 

6 2 x 10 plates 

 

1 4 x 10 plate 

 

2 2 x 4 bricks 

 

6 1 x 6 beams 

 

4 1 x 8 beams 

 

12 1 x 10 beams 

 

2 1 x 14 beams 

 

10 1 x 16 beams 

 

1 long (~10 inches) electric wire with bricks 

 

4 whip antennas 

 

2 9V mini motors 

 

2 motorcycle wheels with tires  

Miscellaneous 

 

6 cell (2 x 3) AA battery holder with leads 

 

6 AA batteries 

 

permanent double sided tape 

Assembly Instructions 
The BalanceBot chassis consists of an undercarriage topped by a platform on 
which the IntelliBrain controller is mounted, as shown in Figure 1.  A 4 beam high 
wall extends up from both the front and rear edges of the platform.  Six beams 
span between the two walls, forming an enclosure around the IntelliBrain 
controller.  A battery box sits on top of the beams and encloses the battery pack.  
There is no top on the battery box. 
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Undercarriage  

1. Attach 2 1 x 10 plates to the outer top rows of a 4 x 10 plate. 
2. Attach the motors on top of either end of this assembly leaving 4 knobs 

spacing between the motors. 
3. Attach 2 2 x 4 bricks to the top of a 2 x 8 plate. 
4. Attach this assembly crosswise on the bottom of the 4 x 10 plate under the 

motors, such that the blocks extend equally forward and rear of the centerline 
of the axles. 

5. Use double sided tape to attach QRB1134 sensors to the forward and rear 
ends of these blocks. 

6. Cut the motor wire into two pieces and strip the cut ends of the wire so they 
can be attached to the motor ports on the IntelliBrain later. 

7. Attach the motor wires to the top of the motors with the wire running toward 
the center of the robot.    

Platform and Wheels  

1. Attach the ends of 2 1 x 16 beams to the top ends of 2 2 x 10 plates, forming 
a rectangle with the plates on the bottom. 

2. Attach 2 more 2 x 10 plates next to the previous two. 
3. Attach 2 more 1 x 16 beams next to the previous two. 
4. Attach 2 1 x 6 beams between the ends of the 1 x 16 beams. 
5. Attach 2 1 x 14 beams next to the 1 x 16 beams. 
6. Attach 2 2 x 10 plates to the top ends of the beams. 
7. Attach 2 1 x 10 plates next to these plates. 
8. Trim the whip antenna pieces at the top of the base. 
9. Insert the antenna pieces in the mounting holes on the bottom of the 

IntelliBrain controller. 
10. Attach the controller to the platform with the right edge of the controller next to 

a 1 x 10 plate.  This will leave a gap at the left end for wires. 
11. Attach the platform to the undercarriage such that it is centered between the 

motors and over the axles. 
12. Feed the motor and sensor wires through the gap at the left of the controller. 
13. Attach the front sensor (to the right of the IntelliBrain controller) to analog port 

5. 
14. Attach the rear sensor to analog port 4. 
15. Attach the left motor to motor port 1 and the right motor to motor port 3. 
16. Check that the motor jumper is set for power from the main battery (see 

IntelliBrain User Guide). 
17. Attach the battery leads to the main battery header (see IntelliBrain User 

Guide). 
18. Download this BalanceBot example application to the robot and press the 

START button. 
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19. Hold the robot about 1/2 inch over a light colored surface tipping it so the front 
is lower. 

20. Note the rotation of the axles.  The axles should rotate so the robot will move 
toward the lower side.  If one or both axles spin in the wrong direction, switch 
power off and reverse the connection of the motor’s leads to the motor port. 

21. Attach two motorcycle wheels to the axles.  

Battery Platform and Box   

1. Build 2, 4-beam-high end walls by attaching 1 x 10 beams on top of each 
other. 

2. Attach these to the front and rear edges of the platform. 
3. Attach 6 1 x 16 beams between the left and right ends of the walls, leaving 4 

knobs gap between the beams. 
4. Arrange 2 1 x 10 beams and 2 1 x 6 beams to form an 8 x 10 rectangle. 
5. Attach 4 1 x 8 beams on top of this. 
6. Attach 2 1 x 10 beams on top and 2 1 x 6 beams to form the third row. 
7. Slide the battery pack through the box so the lead wires run through the box, 

then attach the box to the robot, centered over the axles. 
8. Set the battery pack in the box. 

Calibration 
The PID controller uses three gain constants and a set point to control how the 
robot responds to the feedback signal.  The value of the gain constants is critical 
to the robot's ability to balance, its response to being bumped, and its 
nervousness (tendency to shake).  The set point is determined by the 
thumbwheel position and accounts for differences in readings between the 
sensors that may be due to differences in the sensors or differences in the 
mounting positions (distance above the floor) of the sensors.  

The value of the gain constants depends on specific characteristics of each 
robot.  Variations in design, battery voltage, weight and motor friction may require 
the constants to be calibrated for your BalanceBot.  A commented block of code 
in the main() method of the BalanceBot example provides an example of how 
to use the thumbwheel to calibrate one gain at a time.  One procedure for 
calibrating the gains is as follows:   

1. Modify the example application to set the CALIBRATING constant to true 
and the iGain, dGain and setPoint to 0.0f.  Then use the thumbwheel to 
calibrate the pGain. 

2. Adjust the thumbwheel so the robot recovers from being tipped, but does not 
overreact, tipping even further the other way.  The robot should wobble in a 
constant amplitude oscillation, but not respond wildly and fall over. 

3. Modify the code to set the pGain value to approximately 2/3 the value 
determined in the previous step.  The gain is displayed on the LCD screen.  
Then modify the calibration code so the thumbwheel calibrates the dGain. 
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4. Adjust the thumbwheel so the robot recovers smoothly from being tipped 
without overshooting or jittering once upright. 

5. Modify the code to set the dGain to the value determined in the previous step 
and set the CALIBRATING constant to false to allow adjusting the 
setPoint. 

6. Adjust the thumbwheel so the robot doesn't have a preference to run in one 
particular direction because of a differences in the sensor mounting positions 
and variations in the sensors themselves. 

7. Modify the code to set the setPoint to the value determined in the previous 
step.  Set the CALIBRATING constant to true, and modify the calibration 
code so the thumbwheel controls the iGain. 

8. Adjust the thumbwheel so the robot fully recovers from being tipped.  With the 
iGain set to zero the robot will recover to almost vertical but will tend to have 
a small tip which will cause it to move continuously forward or backward.  
Adjust the iGain so the robot stays in one place and does not oscillate badly. 

9. Modify the code to set the iGain to the value determined in the previous step 
and set CALIBRATING to false. 

Conclusion 
The BalanceBot example demonstrates how a PID control algorithm can be used 
to keep an unstable robot upright using only two inexpensive sensors for 
feedback.  By executing the control algorithm on a high priority thread, the task of 
keeping the robot balanced can be given priority over other tasks.  The example 
application only uses a small portion of the IntelliBrain controller’s CPU and 
memory resources, leaving plenty of computing power to experiment further by 
adding additional capabilities such as navigation and behavior based intelligence. 


