

www.ridgesoft.com

Revision 1.0

Programming Your Robot to Perform Basic Maneuvers 1

Copyright © 2005 RidgeSoft, LLC

Introduction
This tutorial will teach you how to program the IntelliBrain -Bot educational
robot to perform basic maneuvers. You will also learn how to use the
RoboJDE API documentation and the IntelliBrain User Guide to guide your
IntelliBrain programming efforts. In addition, you will learn about controlling
hobby servos from your Java program.

Although this tutorial is based on the IntelliBrain-Bot, the maneuvering
techniques you learn can be applied to just about any two-wheeled differential
drive robot.

Before You Get Started
If you are not already familiar with writing robotics programs using RoboJDE
we recommend you start with the tutorial: Creating Your First IntelliBrain
Program, which is available from the RidgeSoft web site, www.ridgesoft.com.

Maneuvering Your Robot

What is a Differential Drive Robot?
Many mobile robots, including the IntelliBrain-Bot educational robot, are based
on a two wheeled differential-drive design. A robot based on this design uses
two independently powered wheels to enable it to steer. As you can see in
Figure 1, by controlling the direction of each of your robot s two main drive
wheels, you can make your robot perform simple maneuvers. If you program
your robot to turn both of its wheels in the forward direction, it will move forward.
If you program your robot to turn its wheels in opposite directions, it will rotate
clockwise or counterclockwise, depending on the direction the wheels turn.

Figure 1 - Maneuvering a Differential Drive Robot

Rotate
Counter-

clockwise
Drive

Forward
Rotate

Clockwise

Programming Your Robot to Perform Basic Maneuvers 2

Copyright © 2005 RidgeSoft, LLC

Driving Your Robot s Wheels
Many mobile robots, like the IntelliBrain-Bot educational robot, use hobby servo
motors to drive their wheels. The examples in this tutorial are based on a robot
powered by servos.

DC motors are another popular way to drive a robot s wheels. We not will
discuss using DC motors in this tutorial, although, the maneuvering techniques
we discuss can be used equally well for a DC motor powered robot. If you intend
to use small DC motors to power your robot, you can interface to them and
control them using the IntelliBrain Expansion Board.

Standard hobby servo motors have built-in control circuitry and mechanics
designed to rotate the servo s output shaft to a specific position and hold that
position. However, it has become common to modify servos for continuous
rotation. By removing mechanical stops and disabling position sensing circuitry,
you can make many hobby servo motors into continuous rotation servo motors.
In fact, it has become so common, that you can now buy servos manufactured
for continuous rotation, so you don t have to modify them yourself. The servos
included in the IntelliBrain-Bot kit are continuous rotation servos.

Controlling Servos
While continuous rotation servos can power your robot s wheels just like a
conventional DC motor you still have to control them using the servo s control
circuitry. Servo control circuitry is designed to allow the position output shaft to
be set and maintained at that position. However, when servos have been
modified for continuous rotation the circuitry can be used to control the power
supplied to the output shaft and its direction. You will have to learn a bit more
about controlling servos before you can start programming your robot to
maneuver.

Hobby servos are controlled by periodically pulsing the servo s control signal, as
shown in Figure 2. The control signal is typically the white or yellow wire
attached to the servo. You can think of a pulse as switching the power on
momentarily, then switching it back off. A 1 millisecond pulse commands the
servo to position its output shaft at one end of its range (0%). A 2 millisecond
pulse commands the servo to position the output shaft at the other end of its
range (100%). By varying the pulse duration between these two extremes, the
shaft can be moved to an intermediate position.

When you send a control pulse to a continuous rotation servo, rather than
moving the shaft to a particular position and holding that position, the pulse
instead controls the power (more accurately, the torque) and direction of the
shaft. Therefore, when you command the servo to the 0% position with a 1
millisecond pulse it actually results in the servo applying maximum power in the
reverse direction. Similarly, when you command the servo to the 100% position

Programming Your Robot to Perform Basic Maneuvers 3

Copyright © 2005 RidgeSoft, LLC

it applies maximum power in the forward direction. If you command the servo to
the 50% position it applies zero torque.

Figure 2 - Servo Control Signaling

Fortunately, the details of generating servo control pulses are managed for you
by RoboJDE. You only need to be concerned with setting the power and
direction of the servo. You do this by giving the servo position commands which,
for a continuous rotation servo, actually control its power and direction.

Programming Your Robot
Let s start by programming the robot to go straight ahead for five seconds. The
first thing you will need to do is create a software project in RoboJDE. This step
is described in the tutorial titled Creating Your First IntelliBrain Program. We will
use the program from that tutorial as our starting point. If you haven t already
created that program, now would be a good time to do it.

If you didn t have this tutorial to guide you, you would first need to determine how
to command the servo motors from your program. In addition to teaching you
how to program the robot to maneuver, this tutorial will also guide you through
the process of using the documentation to facilitate programming the robot.

Obviously, from the discussion in the previous section, you will need to determine
how to command the servo motors from your Java program in order to make your
robot maneuver. The first steps in doing this is to consult the IntelliBrain User
Guide and the API documentation.

Learning How to Use IntelliBrain Features from the Documentation
Take a moment now to find the section in the IntelliBrain User Guide regarding
the main board servo ports. These are the ports the IntelliBrain-Bot uses to
power and control the two servos it uses to drive its wheels. From the

Servo
Position

Command

0%

50%

100%

Modified

Servo
Behavior

Full Power
Reverse

Control
Signal

1.0 ms

1.5 ms

2.0 ms

~18 ms

Full Power
Forward

No Power

Programming Your Robot to Perform Basic Maneuvers 4

Copyright © 2005 RidgeSoft, LLC

programming example in the user guide, you can see that your program can
obtain a Servo object for a particular port by using the getServo method in the
IntelliBrain class.

A second way that you can learn where to start with an IntelliBrain feature to use
is to view the quick reference document (IntelliBrainAPI.pdf), shown in Figure 3.
Take a moment to locate the quick reference document and identify information
regarding programming the servo ports.

Figure 3 - IntelliBrain API Quick Reference

Finally, the RoboJDE class library API (Application Programming Interface)
documentation contains the most detailed information on programming your
robot. It is essential that you become familiar with using the API documentation
because you will need to refer to it frequently as you program your robot. The
RoboJDE API documentation is in standard Javadoc format. This is the format
used to document most Java APIs. Becoming proficient at using the RoboJDE
API documentation will make you proficient at using similar documentation for
other Java programming projects.

Figure 4 - API Documentation Button on RoboJDE Tool Bar

Click the API documentation button on the RoboJDE tool bar (shown in Figure 4)
to display the API documentation in your web browser. This will launch your web
browser to display the documentation, as shown in Figure 5.

Normally, when you are learning to use a new feature of the IntelliBrain
controller, the best place to start learning about that feature s API is the

API Doc.

Programming Your Robot to Perform Basic Maneuvers 5

Copyright © 2005 RidgeSoft, LLC

documentation of the IntelliBrain class. You can display the IntelliBrain class s
documentation by scrolling to and clicking on the class name in the list of
classes, as indicated by reference 1 in Figure 5. This will display documentation
for the class in the pane on the right hand side. By browsing through the class
documentation, you can find the methods to access various features of the
IntelliBrain controller.

Figure 5 - IntelliBrain API Documentation

Interfacing to IntelliBrain Servo Ports
Since you must learn how to control servos from your program in order to make
your robot move, you will need to use the documentation for the IntelliBrain class
to find a method related to using the servo ports. Browse through the IntelliBrain
class documentation until you find a method related to the servo ports.

You should have found the documentation for the getServo method (shown in
Figure 5). By reading this documentation you will learn this method returns a
Servo object for the servo port number you specify. Noting that the left wheel s
servo is attached to servo port 1 and the right wheel s servo is attached to servo
port 2, you can now extend your program to obtain a servo object for each servo.

Add the following two lines to your program after the line that displays the
program version number:

Servo leftServo = IntelliBrain.getServo(1);
Servo rightServo = IntelliBrain.getServo(2);

Since your program now refers to another type of object, Servo, you must also
add an import statement at the top of your program. This statement is required
to enable the Java compiler to find the Servo class. The import statement

1

2

Programming Your Robot to Perform Basic Maneuvers 6

Copyright © 2005 RidgeSoft, LLC

provides the full name of the class. The full name of a class includes its
package name which is used to avoid problems that could arise with duplicate

class names.

You will need to refer to the documentation for the Servo class to find its location
(package name) in the library. Do this by clicking on the Servo link in the
documentation for the getServo method, as shown by reference 2 in Figure 5.
The documentation for the Servo class will be displayed, as shown in Figure 6.
(It turns out Servo is an interface, not a class, but you don t need to be
concerned about the distinction for the purposes of this tutorial.)

By viewing the documentation you can see that the Servo interface is in the
package com.ridgesoft.robotics in the class library. Therefore, add the following
import statement to your program just after the existing import statement:

import com.ridgesoft.robotics.Servo;

Figure 6 - Servo Interface Documentation

Programming Your Robot to Drive Forward
Your program now has objects leftServo and rightServo that enable it to
control the servos. Your next step is to consult the documentation for the Servo
interface to determine how to you use these objects to control the servos.

Browse the API documentation for the Servo interface to see what methods it
provides. You will see the interface provides two methods, setPosition and off.
As the documentation indicates, the off method turns the servo off and the
setPosition method sets the servo s position between 0 and 100.

Programming Your Robot to Perform Basic Maneuvers 7

Copyright © 2005 RidgeSoft, LLC

Recalling our previous discussion, the position setting command for a servo
which has been modified for continuous rotation actually sets its power and
direction. Setting the position to 0 corresponds to full reverse power. Setting the
position to 100 corresponds to full power forward, and setting the position to 50
corresponds to no power. Note: setting the power to 50 is not the same as
calling the off method. The off method stops sending command pulses to the
servo, whereas setting the power to 50 sends command pulses to the servo.

You must command both servo motors to apply power in the forward direction to
cause your robot to move forward. You can do this by turning each servo on at
full power. However, you also need to take into account that the servos are
mounted opposed to each other, which results in the sense of the commands
being opposite for the two servos. In order to make both wheels rotate in the
forward direction, you must command the left servo to rotate counterclockwise
while commanding the right servo to rotate clockwise. To move the robot forward
at maximum speed, you must set the left servo position to 100 and the right
servo position to 0. After setting these power levels the robot will drive forward
until you command it to stop by calling the off method for each servo.

Add the following lines to your program to program your robot to move forward
for 5 seconds:

leftServo.setPosition(100);
rightServo.setPosition(0);
Thread.sleep(5000);
leftServo.off();
rightServo.off();

You can now test your program by building and downloading it to your robot.
Once you have the program loaded into your robot, disconnect the serial cable,
set the robot on the floor and press the START button. Your robot should drive
straight ahead for 5 seconds.

Programming Your Robot to Rotate

Now that you know how to program your robot to move forward, getting it to
rotate in place is trivial. All you have to do is make the wheels go in opposite
directions instead of the same direction. Add the following statements to make
your robot rotate clockwise:

leftServo.setPosition(100);
rightServo.setPosition(100);
Thread.sleep(5000);
leftServo.off();
rightServo.off();

Programming Your Robot to Perform Basic Maneuvers 8

Copyright © 2005 RidgeSoft, LLC

Add these statements to make your robot rotate counterclockwise:

leftServo.setPosition(0);
rightServo.setPosition(0);
Thread.sleep(5000);
leftServo.off();
rightServo.off();

Programming Your Robot to Drive in a Square
You can make your robot drive in a square simply by programming it to perform a
sequence of moving forward and rotating 90 degrees four times in a row. You
will need to adjust the sleep time during the rotation step so your robot rotates 90
degrees. For the IntelliBrain-Bot, changing the sleep duration to 625 should
make the robot rotate approximately 90 degrees. However, the exact value
depends on characteristics of your individual robot and the condition of the
batteries. You can also adjust the size of the square by adjusting the sleep time
in the forward movement step.

Rather than repetitively adding statements to the program to drive straight, turn
right, drive straight, turn right, and so on, you can use a loop to reduce the
number of statements in the program. Since a square has four identical sides
joined by four identical angles you can program your robot to drive in a square by
performing two steps: 1) drive forward and 2) turn 90 degrees. By repeating
these steps four times, in a loop, your robot will drive in a square.

Add the following statements to program your robot to drive in a square:

for (int i = 0; i < 4; ++i) {
 // drive forward
 leftServo.setPosition(100);
 rightServo.setPosition(0);
 Thread.sleep(5000);

 // rotate clockwise approximately 90 degrees
 leftServo.setPosition(100);
 rightServo.setPosition(100);
 Thread.sleep(625);
}
leftServo.off();
rightServo.off();

Download and test your program. You will most likely find that your robot does
not drive in a perfect square. This is primarily due to the angles of the square not
being exactly 90 degrees. If the robot turns less than 90 degrees at each corner,
increase the sleep time. If the robot turns more than 90 degrees at each corner,
reduce the sleep time.

Programming Your Robot to Perform Basic Maneuvers 9

Copyright © 2005 RidgeSoft, LLC

Conclusion
The key to maneuvering a differential-drive robot is controlling the direction and
speed of the two wheels. By programming the robot to turn both wheels in the
same direction, it will go forward. By programming your robot to turn its wheels
in opposite directions, it will rotate in place. In addition, you can program your
robot to perform other move maneuvers such as arcing left or right by applying
different amounts of power to each wheel.

You can program your robot to perform more sophisticated maneuvers by
performing timed sequences of basic maneuvers. By programming your robot to
perform four repetitions of moving straight and turning 90 degrees it will drive in a
square pattern.

As you experiment with your robot, you will observe that using time as the basis
for navigation has its limitations. As the batteries drain, the behavior of your
robot will change. Also, your robot s performance will vary depending on the
surface it operates on. The difference in friction between different surfaces will
have a significant effect on how your robot performs.

Unfortunately, as the control software for your robot is currently implemented, it
provides no mechanism for the robot to account for variations in conditions, such
as battery charge and friction, which affect its performance. The robot s control
system is said to be open loop

because it lacks feedback

to account for
variations in conditions which affect your robots performance.

You can improve the consistency and accuracy of your robot s maneuvering by
adding sensors to provide feedback to its control software. One way you can do
this is by adding wheel encoders that sense the position of each wheel, which is
a topic we will leave for another tutorial.

You have also learned about controlling hobby servos. You can use servos to
control the position of an arm or other device. Servos can be modified for
continuous rotation to be used like conventional motors. Servos are commonly
used for robotics applications because they are inexpensive, lightweight, easy to
mount and easy to control.

Finally, this tutorial demonstrated how to use the class library API documentation
and the IntelliBrain User Guide to learn how to program your robot. By using the
documentation you can learn how to access features of the IntelliBrain controller
you have not previously used.

Exercises

1. Browse to the documentation on the getServo method of the IntelliBrain
class in API documentation.

Programming Your Robot to Perform Basic Maneuvers 10

Copyright © 2005 RidgeSoft, LLC

2. Find the getServo method in the IntelliBrain API quick reference.
3. Locate the discussion of using servo ports in the IntelliBrain User Guide.
4. Find documentation on the Servo interface in the class library API

documentation.
5. Program your robot to drive straight ahead for exactly 12 inches. Using

the same program, run the robot on a different surface. How far did it go?
Why does it not go the same distance on all surfaces?

6. Program your robot to rotate exactly 180 degrees. Using the same
program, run the robot on a different surface. How far did it rotate? Why
does it not rotate the same amount on all surfaces?

7. Program your robot to navigate in a triangle or some other shape you
choose.

8. Program your robot to arc to the left or right as it moves forward by
applying a different amount of power to each wheel. What happens when
you increase or decrease the difference in power?

9. Program your robot to navigate a particular shape, then change the
batteries to a set of batteries that has more or less charge remaining.
How does this affect the navigation?

Copyright © 2005 by RidgeSoft, LLC. All rights reserved.

RidgeSoft , RoboJDE and IntelliBrain are trademarks of RidgeSoft, LLC.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries. All other brand or product names are trademarks of their respective owners.

RidgeSoft, LLC
PO Box 482
Pleasanton, CA 94566
www.ridgesoft.com

