

www.ridgesoft.com

Revision 1.0

Creating a User Interface for Your Robot 1

Copyright © 2005 RidgeSoft, LLC

Introduction
For just about any robot project you undertake, you will need a means to interact
with your robot. By developing a user interface before you get too far into your
project, you will be able to easily test and debug your robot s hardware and
software as you develop it. This tutorial will take you through the process of
building a simple user interface that will allow you to interact with your robot.

In addition to creating a user interface, this tutorial demonstrates designing your
software as reusable components. Because it provides for object-oriented
software and multi-threading, Java is an excellent language for creating reusable
robotics software components. In this tutorial, you will create user interface
components that allow you to easily extend and modify your robot s user
interface. You will also be able to use these components over and over again as
you embark on different robotics projects. And, the data displayed on the LCD
screen will update without interfering with other more important tasks your robot
is doing.

Before You Get Started
This tutorial builds on concepts discussed in the following tutorials:

Creating Your First IntelliBrain Program
Programming Your Robot to Perform Basic Maneuvers

If you are not already familiar with the concepts covered in these tutorials, we
recommend you complete them before completing this tutorial. These tutorials
are available from the RidgeSoft web site, www.ridgesoft.com.

The programming steps in this tutorial start off with the MyBot program
developed in the Creating Your First IntelliBrain Program tutorial.

User Interface Requirements
Before starting any programming project, it is always a good idea to consider the
requirements of the feature(s) you are implementing. Usually, you will need to
carefully consider the problem you are solving to discover the requirements.
However, for this project the requirements will be given to you.

The requirements for the user interface you will be building are as follows:

1. Display output using the IntelliBrain controller s two line LCD module.
2. Provide the ability to display multiple screens of data.
3. Allow the user to select which of the screens of data to display by using

the IntelliBrain controller s thumbwheel.
4. Allow the user to select which of several pre-programmed functions to

execute using the IntelliBrain controller s push buttons.

Creating a User Interface for Your Robot 2

Copyright © 2005 RidgeSoft, LLC

5. Periodically update the current screen without interfering with what the
robot is otherwise doing.

6. Implement the user interface components in such a way that they can
easily be reused.

If you wanted to support more advanced user input and remote control, you could
use a TV remote control for input instead of the push buttons and thumbwheel.
The IntelliBrain controller supports this via an infrared receiver module on the
IntelliBrain main board. However, we will leave this as an exercise for you once
you ve completed this tutorial.

Creating Reusable Software Components
One of your requirements as you design and implement your user interface is to
create software components that are easy to reuse in future robotics projects.
Three keys to achieve this goal are:

1. Creating components that are cohesive and provide useful functionality.
2. Creating components such that they have minimal interdependencies in

other words they are loosely coupled to the rest of the system.
3. Designing generic interfaces to components that promote

interchangeability.

Java and Software Reusability
Java was designed from the ground up to support object-oriented programming,
a software development paradigm that is ideal for developing cohesive software
components and loosely coupled software systems. In addition to being object-
oriented, Java supports multi-threading, making it much easier to implement
multi-tasking real-time systems, such as a robot, with minimal coupling between
components.

Java has a built-in mechanism for defining and using software interfaces,
allowing a variety of software components based on a common software
interface to be used interchangeably.

Java also provides a means to share pre-built software components without
dependencies on vendor specific development tools, like a compiler or
assembler, or dependencies on a specific microcontroller. Instead, pre-built
components can be built once, packaged, and shared without end users needing
to be concerned about any of these things.

As you complete this tutorial, you will leverage these strengths of Java to create
a simple user interface that consists of a few cohesive components that are
loosely coupled to the other portions of your robot s software.

Creating a User Interface for Your Robot 3

Copyright © 2005 RidgeSoft, LLC

Developing User Interface Classes

Accessing the IntelliBrain Controller s LCD Display
As was demonstrated in the MyBot example in the Creating Your First IntelliBrain
Program tutorial, you can get a reference to the object that allows your program
to interact with the IntelliBrain controller s display, as follows:

Display display = IntelliBrain.getLcdDisplay();

The reference returned by this call refers to an object that implements the
Display interface, an interface which defines methods for interacting with any
multi-line, character-oriented display.

You can become more familiar with the details of the IntelliBrain class, the
getLcdDisplay method, and the Display interface by viewing the RoboJDE API
documentation. If you are not familiar with using the API documentation, the
tutorial Programming Your Robot to Perform Basic Maneuvers includes
instruction on how to use the API documentation.

Creating the Screen Interface
You can print text to the IntelliBrain LCD screen by using the object reference
obtained from the getLcdDisplay method. However, to meet the previously
stated requirements, your user interface will need to have the ability to display
multiple screens of text that you can scroll through using the thumbwheel. You
can accomplish this by defining a Screen interface. This will allow you to
develop a variety of screens that each displays different information. It will also
allow each screen to be plugged into, or removed from, the user interface with
minimal effort. That is, your screens will be loosely coupled to the rest of your
program.

Each screen must have the ability to display its own data when it is selected.
Therefore, your Screen interface will need a method to update the display, as
follows:

public void update(Display display);

Your program will be able to update the text displayed on the LCD screen by
calling the update method of whichever Screen object the user selects using the
thumbwheel.

Perform the following steps to create the Screen interface:

1. Start by using RoboJDE to open the project you want to add the user
interface to. We will use the MyBot project developed in the Creating Your
First IntelliBrain Program tutorial.

2. Select File->New Class menu item.

Creating a User Interface for Your Robot 4

Copyright © 2005 RidgeSoft, LLC

3. Enter Screen as the class name in the New Class dialog, and then click
OK.

4. Enter the following statements in the window for the Screen.java class:

import com.ridgesoft.io.Display;

public interface Screen {
 public void update(Display display);
}

5. Click the Save All button on the tool bar.

Implementing a Screen to Display Static Text
Now that you ve defined the Screen interface, you need to create a class that
implements the Screen interface and displays some interesting data. A good
screen to start with is one that simply displays two lines of unchanging text. You
will be able to use this to display the name and version number of your program.

Use RoboJDE s File->New Class menu item and creating a StaticTextScreen
class. Edit the new class to include the following code:

import com.ridgesoft.io.Display;

public class StaticTextScreen implements Screen {
 private String mLine1;
 private String mLine2;

 public StaticTextScreen(String line1, String line2) {
 mLine1 = line1;
 mLine2 = line2;
 }

 public void update(Display display) {
 display.print(0, mLine1);
 display.print(1, mLine2);
 }
}

This class declares that it implements the Screen interface; therefore, Java
requires that it also implement the update method defined by the Screen
interface. The update method simply prints the two predefined Strings to the two
lines of the display. You will specify the two lines of text by passing them as
arguments to the constructor when you construct each StaticTextScreen later in
this tutorial.

Managing Multiple Screens
Your next step is to create a class that will keep track of several Screen objects
and periodically call the update method of the currently selected Screen.

Creating a User Interface for Your Robot 5

Copyright © 2005 RidgeSoft, LLC

Recalling the requirements, you need to allow the display to be updated while
your robot is doing other things. Fortunately, Java provides multi-threading which
makes it easy for your programs to perform multiple tasks at the same time. In
case you are not familiar with the concept of multi-threading, let s digress briefly
to discuss it.

Multi-Threading Explained
Multi-threading allows your program to perform multiple tasks concurrently. To
implement multi-threading, you must structure your program into separate tasks
that will execute concurrently.

As a simple analogy, consider a chef cooking the main course of a meal. The
chef must prepare all of the items that make up the main course concurrently so
the entrée, sauces and side dishes are all ready to eat at the same time. The
chef prepares the meal by breaking his work into several smaller tasks which
consist of preparing each individual item according to a recipe for that item.
Rather than cooking each item in its entirety before starting to cook the next item,
the chef prepares all of the items concurrently by repeatedly working on each
item for a short period of time then proceeding to tend to the other items. By
working in this fashion the chef performs multiple tasks at the same time,
preparing each of the individual dishes to accomplish the larger goal of creating
the entire main course.

As you develop your robotics program, you will find you need to program your
robot to do many things concurrently. Just as a chef organizes his work into
smaller tasks, you must organize your robot s work into tasks that execute
concurrently. Fortunately, Java provides multi-threading support to help with this.

To make use of Java s multi-threading features, you will need to organize your
program into separate tasks that consist of their own thread of work. In the
analogy above, the chef executes each individual item s recipe as a separate
thread of work. That is, when working on a particular item, he gives his exclusive
attention to that item, picking up that thread of work where he last left off and
continuing to execute that item s recipe. When it comes time to tend to another
item, he suspends that current item s thread of work and switches his attention to
another item, continuing the thread of work for that item.

Conveniently, maintaining up to date text on the LCD screen is a well defined
cohesive task that can be easily isolated from other tasks your robot will perform.
Therefore, it can be considered its own thread of work that you can implement by
extending the Thread class provided by Java.

Creating a ScreenManager Class
Your ScreenManager class will be responsible for updating the text displayed on
the LCD screen. To do this task, your program will need to periodically read the
position of the thumbwheel to determine which of a list of screens to display. The

Creating a User Interface for Your Robot 6

Copyright © 2005 RidgeSoft, LLC

program will then need to call the selected screen s update method to update the
text on the display. You can take advantage of Java s multi-threading capability
by extending the Thread class, which is part of the RoboJDE class library.

Use RoboJDE s File->New Class menu item to create a ScreenManager class.
Edit the new class to include the following code:

import com.ridgesoft.io.Display;
import com.ridgesoft.robotics.AnalogInput;

public class ScreenManager extends Thread {
 private Display mDisplay;
 private Screen[] mScreens;
 private AnalogInput mUserInput;
 private int mPeriod;

 public ScreenManager(Display display,
 Screen[] screens,
 AnalogInput scrollDevice,
 int threadPriority,
 int period) {
 mDisplay = display;
 mScreens = screens;
 mUserInput = scrollDevice;
 mPeriod = period;
 setPriority(threadPriority);
 start();
 }

 public void run() {
 try {
 int divisor = mUserInput.getMaximum() + 1;
 while (true) {
 try {
 int index = (mUserInput.sample() *
 mScreens.length) / divisor;
 mScreens[index].update(mDisplay);
 } catch (Exception e) {
 e.printStackTrace();
 }
 Thread.sleep(mPeriod);
 }
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

The ScreenManager class declaration states that this class extends Thread
which means it extends the Thread class in the RoboJDE class library. To
extend the Thread class, the ScreenManager class must implement a run
method. A Thread class s run method executes on its own thread and is
responsible for performing all of the work for that thread. Therefore, the

Creating a User Interface for Your Robot 7

Copyright © 2005 RidgeSoft, LLC

ScreenManager class s run method is responsible for executing all of the code
necessary to periodically update the LCD screen.

In order to update the display, the ScreenManager class s run method needs: 1)
a reference to the list of available screens to display, 2) a reference to the analog
input for the thumbwheel, 3) a reference to the display to output to and 4) the
period of time to sleep between updates to the screen; therefore, the
ScreenManager class includes four member variables (mScreens, mUserInput,
mDisplay and mPeriod) corresponding to these items.

The constructor method for the ScreenManager class initializes the four member
variables with data provided as arguments to the constructor when the object is
created. The constructor also has one additional argument to specify the priority
of the ScreenManager thread. After initializing the member variables, the
constructor sets the thread priority and calls the start method to start the thread.
This causes the run method to start executing on a separate thread.

Finally, the ScreenManager class s run method contains the code to periodically
update the text displayed on the LCD screen.

Out of the dozen or so lines of code in the run method, just two lines do all of the
work of the ScreenManager. The line

int index = (mUserInput.sample() * mScreens.length) / divisor;

samples the user input (thumbwheel) and scales the sampled value to calculate
the array index of the screen to display.

The list of screens is an array, which is a basic type of data in Java. An array
consists of a number of elements that can be accessed using a zero-based
index. For example, if there were three screens to choose from, the first screen
would be accessed using zero as the index (mScreens[0]), the second screen
using one as the index (mScreens[1]) and the last screen using two as the index
(mScreens[2]). Arrays also have a fixed length. The number of available
screens is the same as the length of the array (mScreens.length). If there were
three screens, the length of the array would be three.

The line,

mScreens[index].update(mDisplay);

calls the update method of the selected Screen, which will print the appropriate
data to the display.

These lines of code are within a while loop that runs forever. The loop also
includes a call to the Thread.sleep method, which tells Java s thread scheduler to
stop execution of the thread for the number of milliseconds specified by the

Creating a User Interface for Your Robot 8

Copyright © 2005 RidgeSoft, LLC

argument. Other threads can continue to perform their work while this thread
sleeps. Also, other higher priority threads can suspend this thread even when it
is not sleeping.

You will find making use of the thread priority mechanism is very useful in
robotics programs. This allows you to specify which tasks are most important. If
multiple threads are eligible to execute at the same time, the thread priority value
enables the Java virtual machine to select the most important thread to execute.
For example, you will most likely want navigation of your robot to take priority
over updating the LCD display. By giving the ScreenManager lower priority than
navigation threads the Java virtual machine will choose to delay screen updates
in favor of executing the navigation threads to keep your robot on course.

The run method also includes two try-catch blocks. The way errors are reported
in Java is by throwing an exception object that contains specific information
about the error. The exception object gets thrown from the currently executing
method back through the method call chain to the first method that catches it. If
no method catches the exception, Java exits (terminates) the thread. The nice
thing about handling errors this way is that a method that can t do anything about
a particular error doesn t need to even consider the error. In procedural
languages like C, you frequently end up with a lot of messy code in every
function to deal with errors. With exception-based error reporting, it isn t
necessary to include a lot of error handling code in every method.

The inner try-catch block in the ScreenManager class s run method will catch
exceptions of class Exception that occur when calling the update method of the
selected screen. The handler code in the catch block simply prints the stack
trace and allows the screen update loop to continue executing. If there is a
problem displaying one screen, it won t prevent the ScreenManager from
displaying another screen when you turn the thumbwheel.

The outer try-catch block in the ScreenManager class s run method catches all
exceptions of class Throwable, which is the base class for all exceptions. Errors
that aren t caught by the inner try-catch block will be caught by the outer try-catch
block. The outer try-catch block will report any error that causes the
ScreenManager thread to exit. Without the outer try-catch block, errors would
cause the thread to exit silently, and it wouldn t be obvious the ScreenManager
thread wasn t running anymore.

Function Selection
The final requirement you will need to address is the ability to select which of
several preprogrammed functions the robot should execute. This only needs to
run briefly when the program is starting. Therefore, you can put the selection
code in the main method of the MyBot class, as will be described later.

Creating a User Interface for Your Robot 9

Copyright © 2005 RidgeSoft, LLC

To keep your program well organized, you will want each function to be
implemented independently of other functions. You can make use of the
Runnable interface to create separate function classes that can be selected and
run. The Runnable interface requires implementing classes to provide a method
named run. The run method needs to contain the code to carry out the specific
function. You can create a couple of simple function class for testing purposes.

Use RoboJDE s File->New Class menu item to create a DoBeep class to beep
the IntelliBrain controller s buzzer, as follows:

import com.ridgesoft.intellibrain.IntelliBrain;
import com.ridgesoft.io.Speaker;

public class DoBeep implements Runnable {
 public void run() {
 Speaker speaker = IntelliBrain.getBuzzer();
 speaker.beep();
 }

 public String toString() {
 return "Beep";
 }
}

The run method of the DoBeep class beeps the buzzer. The toString method will
allow your function selection code to display the name of the function.

Use RoboJDE s File->New Class menu item to create a second test class named
DoNothing, as follows:

public class DoNothing implements Runnable {
 public void run() {
 }

 public String toString() {
 return "Do Nothing";
 }
}

Tying it all Together
You will now need to update your main class, MyBot, to incorporate the user
interface classes you have created. The main method in your MyBot class will
need to create a list of functions that you can select from and a list of screens
you can select from when you run your program.

Update the MyBot class as follows:

import com.ridgesoft.io.Display;
import com.ridgesoft.robotics.PushButton;
import com.ridgesoft.intellibrain.IntelliBrain;

Creating a User Interface for Your Robot 10

Copyright © 2005 RidgeSoft, LLC

public class MyBot {
 public static void main(String args[]) {
 try {
 Display display = IntelliBrain.getLcdDisplay();
 PushButton startButton =
 IntelliBrain.getStartButton();
 PushButton stopButton =
 IntelliBrain.getStopButton();

 Runnable functions[] = new Runnable[] {
 new DoBeep(),
 new DoNothing(),
 };

 startButton.waitReleased();
 IntelliBrain.setTerminateOnStop(false);
 int selectedFunction = 0;
 display.print(0, "Function");
 display.print(1,
 functions[selectedFunction].toString());

 while (!startButton.isPressed()) {
 if (stopButton.isPressed()) {
 if (++selectedFunction >= functions.length)
 selectedFunction = 0;
 display.print(1,
 functions[selectedFunction].toString());
 stopButton.waitReleased();
 }
 }
 IntelliBrain.setTerminateOnStop(true);

 Screen[] screens = new Screen[] {
 new StaticTextScreen("MyBot", "Version 0.3"),

 new StaticTextScreen("Screen 1", "abcd"),
 new StaticTextScreen("Screen 2", "1234"),
 };

 new ScreenManager(display,
 screens,
 IntelliBrain.getThumbWheel(),
 Thread.MIN_PRIORITY,
 500);

 functions[selectedFunction].run();
 }
 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

The updated MyBot main method now contains the code to allow you to select
one of two functions for the robot to perform DoBeep or DoNothing. It also
contains the code to initialize the screen manager with three screens.

Creating a User Interface for Your Robot 11

Copyright © 2005 RidgeSoft, LLC

The function selection code runs first before the screen manager starts. The
function selector uses both of the IntelliBrain controller s push buttons. In order
to use the STOP button, the RoboJDE Java virtual machine has to be told to not
terminate the program when the STOP button is pressed. The call to the
setTerminateOnStop method with the argument false does this.

As long as the START button is not pressed, the function selector code executes
a while loop checking to see if the STOP button is pressed. Whenever the STOP
button is pressed the current selection is changed to the next function on the list.
When the end of the list is reached, the selection returns to the beginning of the
list. Once the START button is pressed the loop exits and the current selection is
the function the program will execute.

The program next proceeds to create an array of three screens and then
initializes the ScreenManager. This will start the screen manager thread and the
LCD screen will begin updating.

Finally, the program calls the run method of the selected function to carry out the
function.

The class diagram in Figure 1 shows the relationship of the classes you ve
developed in this tutorial.

Figure 1 - Class Diagram

MyBot ScreenManager

AnalogInput
(thumbwheel)

Display

Screen

StaticTextScreen

Runnable

DoBeep

DoNothing

Thread

Creating a User Interface for Your Robot 12

Copyright © 2005 RidgeSoft, LLC

Testing Your Program
You are now ready to test our program. You can compile and download the
program by clicking on the download button in RoboJDE. You can start the
program executing by pressing the button labeled START on the IntelliBrain
controller. Pressing the STOP button repeatedly will step you though the list of
functions, displaying the name of the next choice of function with each button
press. When you ve found the function you want to run, press the START button
again. You can then use the thumbwheel to scroll through and view the three
screens.

Conclusion
You have created several components that provide a simple and easy to extend
user interface to your robot. As you add features to your robot you will be able to
extend the user interface to incorporate the new features. You will find the ability
to add new screens extremely useful when adding new sensors. You can add
screens to display data sampled from each new sensor you add to your robot,
enabling you to understand and verify the function of each sensor. You will also
find it handy to display data calculated by your program to verify the function of
your program.

Exercises
1. Add a new screen to display your name.
2. Add a new screen to sample and display the current value of an analog

input port.
3. Add a new screen to sample and display the current value of a digital input

port.
4. Add a new function to blink the green status LED once per second.
5. Add a new function to make the robot go forward for five seconds.
6. Enhance your user interface to use a TV remote control as an input device

instead of using the thumbwheel and push buttons for input.

Copyright © 2005 by RidgeSoft, LLC. All rights reserved.

RidgeSoft , RoboJDE and IntelliBrain are trademarks of RidgeSoft, LLC.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries. All other brand or product names are trademarks of their respective owners.

RidgeSoft, LLC
PO Box 482
Pleasanton, CA 94566
www.ridgesoft.com

