Ridge Soft"

Exploring Robotics
with the
IntelliBrain-Bot

An Introduction to Robotics and Java™ Programming

Copyright © 2005-2007 by RidgeSoft, LLC. All rights reserved.
RidgeSoft™, RoboJDE™ and IntelliBrain™ are trademarks of RidgeSoft, LLC.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All other brand or product
names are trademarks of their respective owners.

RidgeSoft, LLC

PO Box 482
Pleasanton, CA 94566
www.ridgesoft.com

Revision 2

Table of Contents

INTRODUCING THE INTELLIBRAIN-BOT ...ttt ettt sttt s e ee s st e s st n s senae e s saaeeas 1
INTELLIBRAIN-BOT EDUCATIONAL ROBOT DESIGN ...uutiiiiiiiiiiiiiiriieie e ieibiteee e e s sesisbeeesesssesssbsseeesssessnsssnens 2
A HANDS-ON DEMONSTRATION .. .ttttieeeeeiisrereeeeeeeiasrsseeeseseiasisssseesesssamssssssesesssamssssesssesssemsssrssseesssemmsrssseesss 5
S LY LY Y = 2 12
EXERCISES ...t i iteeee e ettt e eeettee e ettt e e e st eeessteeesasseeeesabaeeeaasteseeasseeessnbeeeeeasbeseeanseeseanbeeeseanbeeesanntesesneneessnbenenans 12
PROGRAMMING THE INTELLIBRAIN-BOT ...ttt ettt aae s s e s eaae s s sanane s 19
CREATING A NEW PROUJECT ... uutetiiiii i ietttiiee e s s sttt s e s s s e s st e stseasseseasbaseeesssssassbabeeesesssassbabasesesssessssbenenassss 19
CONNECTING THE ROBOT TO Y OUR COMPUTER ...uutitiieiiiiiitririiesesesiibssieessssssssbasseessssssssssssssesssesssssssssessns 21
RUNNING Y OUR FIRST PROGRAM ...tttiiiiiiiiititiies ettt s ettt e s s s e sba b s s e e e s s s e saabanesesssssansbasenesssssansbanens 22
PROGRAMMING CONCEPTS ..ciiiiiiiitetiiee e e e siibareie s s s e sesibabseesssssesababesesesssasbabaseeesssesasbasesasssesasbabenesssssansbasens 23
DEBUGGING Y OUR PROGRAMS ... uutttiiiiiiiiiititiees e e e teibateeesesssesbsbasesesssessabasssesssesssstesssessssssssbssesesssssnsssssens 26
SUMMARY Letttttttieeiieiiubeeetesesesisbaseeesesssassbaseeesesssasbabseesaessasassbasesesssesassbabeeesssssaasbabesesesssassbabaeesesssesssbannnessss 32
EXERCISEScctttetiiee i ieiitteetie s et e ses b bt e e s e e e s e b b e beeeeeeesaaaba b e e eeeeesaaba b e e eeeeesesbabaeeseessesansbaaeeeeseesnsbabenesesesasbarens 32
MANEUVERING THE INTELLIBRAIN-BOT ...ttt st iae s s s s s saa e s snan s 33
DIFFERENTIAL DRIVE ROBOTS....ceiiiteieieittieeeeteee e steeesestee s sesseesssbaeessastesssasaesssasesessassesssasssesssasssesssnsenesans 33
PROGRAMMING SIMPLE IMANEUVERS......uttiiicteeeeiteeeeesteeeeesseesssssseesssstesseasssssssssssesssssesssasssesssssssssssssenesans 34
COMBINING SIMPLE MANEUVERS.ccccottttiiieeiieiittereiesssesisbsstsesssesassbsseeesssssasssasssesesssssssssssesesssessssssssesss 38
SUMMARY tttttitiesiiesitbeeteesssesesbastresssesaasbasteesesssassbesssesesssasassbeseseassesassbasseesssesaasbaseeesesssassbabesesesssesnsbannnassss 45
= (@ £ =L ST 46
INTERACTING WITH THE INTELLIBRAIN-BOT ...ttt st 49
LS TN T 1= O 11 = U SN 49
LS TN I = TN 51
USING THE THUMBWHEEL ..uuvvviiiiiiiiiiittieeseesiesssseeesesssasissrssssesssasssssssssssssesasssssssssssssssssssssssesssessssssssesssasns 55
ARITHMETIC OPERATIONS ..1ttiiiiiiiittteteiessiasisstesetesssesisstssssesssesssssssssesssesasstsssssssssisssssssessssissssseeesessssssssens 56
USING PUSH BUTTONS. ... iittitiiii ittt s e s seiiabee e s e s e s esbabee e s e s s seseaabaseeesssesassbaseseessesassbabeeesesssessbabeeesesssasans 59
LOGICAL OPERATORS AND BOOLEAN VARIABLES....ccciiteieieteeeeiteeeeeeteseeessaesssssseessssbesssesssesssesseesssnsenesans 60
TEACHING THE ROBOT NEW TRICKS ...t ccittteieieeiieiitteeeeesssesssrereeesssesssrasesesssesssstssesesssesssrssssesssessnssssesesss 61
SWITCH STATEMENTS ... uteieieteeeeiteeeeestteeeesaeeessbeeesasstesesasaeeesasbesesasseesesasssessassesesastesssasseessassenesasssesssnnnnes 63
LS TN 1 [=10 74 = = RN 66
PLAYING A TUNE cotiiii ettt ettt e e e sttt e e e s e s e a b e e e s e e e sesababeeeeeassessbabaeesesssesnsbeseeeessesansbanenesssssassbannns 66
USING A UNIVERSAL REMOTE CONTROLccciiiutttiiiieeiiisistrereiesssessssbssesesssesssssssssesssssssssssssssssssssssssssssssssasns 68
S LN 2 2O 74
EXERCISES ctttitiiii i ieiiitt it e s e e e st b e e s s e et e b et e e e s e e e saa b st e e e e e s e saab s b e e e e eessa s ba b e e eeesssesanabaeeeeessesnbbabenesssesansbanens 74
INTRODUCTION TO SENSING ..ottt ettt ettt sttt e s e st e s s seaseassabaeesssatesssesaeeassabenesssssesssarenes 77
SONAR RANGE SENSING ...oceiiiuttitiieeeieiiibtrieesessiesisatesesesssasissbasesesssesassbssesessssiasssssesesessiasssrssssesssessssresssesss 77
USING THE PING))) SENSOR 1..vtteiuieuieiessestessestesseesessessessessessessessessessssssssssssessessessessesssssssnsessessessessessesennes 82
S LY LY Y =28 90
= 2Tt =L 90
LINE FOLLOWING ...ttt ettt ee e st e e st e e s s bt e e s e bt e e s s sase e s sabeeeseabesssnanassssbenesassensssarenaas 91
[TN S = N LS AN TR 91
FOLLOWING A LINE USING ONE SENSORuuvvviieiiiiiiiireriietesesesisssesesesssesissresssesssesssssssssesssssssssssssessssssssssees 94
FOLLOWING A LINE USING TWO SENSORS.....utiiiiiiiiiiittiietesssesisreeesesssesissresssesssesssssssssesssssssssssssessssssssssees 97
SUMMARY etttttiiieeiieetabeeei e s s sesisbaseseassesssbasteeassesassbasesesssesasbaseeesesesassbabesesesssaabsbaeeseessessbabanesesssesnsbanenassas 106
= (@ £ =LY 107

CHAPTER 1

Introducing the IntelliBrain-Bot

Throughout this book we will be using the IntelliBrain™-Bot Deluxe educational robot to
learn about the emerging field of robotics. The IntelliBrain-Bot educational robot isa
pre-designed mobile robot, which will alow usto focus our discussion primarily on
robotics programming, using the companion Javar™-enabled robotics software
development environment, RoboJDE™. Before we get started programming the robot,
let’sfirst take alook at the mechanical and electronics components which make up the
IntelliBrain-Bot educational robot.

IntelliBrain 2
. LCD robotics controller _
Aluminum Ultrasonic
chassis range sensor
Infrared wheel
encoder sensor
Infrared range
sensor
Drive wheel

Infrared line

sensor
Servo motor

Figure 1-1 - IntelliBrain-Bot Deluxe Educational Robot

IntelliBrain-Bot Educational Robot Design

Figure 1-1 shows afully assembled IntelliBrain-Bot Deluxe educationa robot. Asyou
can seein the figure, the robot is made up of the following major parts:

IntelliBrain 2 robotics controller with LCD display
aluminum chassis

servo motors

wheels

assorted hardware

Sensors

battery holder (not visible, under chassis)

batteries (not visible, under chassis)

Mechanics

The IntelliBrain-Bot educational robot employs a simple mechanical design. An
aluminum chassis fabricated from a single piece of sheet metal provides a sturdy central
structure for the robot. Two motors mounted on the underside of the chassis drive the
two large wheels, enabling the robot to move under its own power. A ball tail wheel
supports the back end of the robot. The robotics controller, sensors, motors, tail wheel
and battery holder mount directly on the chassis.

13 Digital Inputs/Outputs

Infrared Transmitter

COM2 Port 7 Analog / Digital Inputs

- RS-232,115.2K baud
- CMUcam ready
(6V regulated power)

Infrared Receiver
- Sony/Universal TV remote
compatible

2,
8 Servo Ports S1%C Ports

- 5with power
- 3signal only

Java™ Programmeable Atmel ATmegal28

Microcontroller

- 147MHz

- 128K flash program memory
- 132K RAM

- 4K bytesEEPROM

RoboJDE v1.5.0r1
Read

16x2 L CD Display

6 Programmable LEDs

2DC Motor Ports

Battery Power
- 4-6alkaline, NiCd,
or NiMH batteries

Wall Brick
Power Connector

START STOP

2 Push Buttons

COM1 Port
- RS-232,115.2K baud

Buzzer

Thumbwheel

I i
@ .}' ounting Roles

- IntelliBrain-Bot
- Your custom robot
- Legogrid compatible

- Host interface or general

Power Switch purpose

- Bluetooth ready
(5V pin 9 power)

Figure 1-2 - IntelliBrain 2 Robotics Controller

2 IntelliBrain-Bot Educational Robot Design

IntelliBrain 2 Robotics Controller

The IntelliBrain 2 robotics controller, depicted in Figure 1-2, isthe IntelliBrain-Bot
educational robot’s brain. A Java™ program executing on the IntelliBrain robotics
controller enables the robot to function independently, analyzing input from the robot’s
sensors and by controlling the robot’s motors to achieve desired results. By creating and
loading different programs you can program the robot to perform a wide range of
functions. A program can be very simple or quite complex. A program may be astrivial
as displaying your name on the LCD screen or as complex as a program that controls a
search and rescue robot.

Sensor and Motor Ports

Sensors and motors connect to the IntelliBrain 2 robotics controller viainput and output
ports. Asyou can seein Figure 1-1 and Figure 1-2, most of these ports consist of
connector pins aong the front edge (top edge in Figure 1-2) of the controller board. Each
port has three or four pins. ground, power and signal pins. The ports are arranged side-
by-side across the forward edge of the controller’s circuit board. Each port is marked by
alabel on the controller board, which indicates the type of port and the number of the
port. Table 1-1describes the ports available on the IntelliBrain 2 robotics controller.

Table 1-1 - IntelliBrain 2 Robotics Controller Ports

Port Type Labels Description

Anaog A1-A7 Analog ports use an analog to digital converter to read a
voltage between 0 and 5 volts and convert it to an integer
value between 0 and 1023, where 0 corresponds to 0 volts
and 1023 corresponds to 5 volts.

Digital 101-1013 Digital portsinput or output a Boolean (on/off or
true/false) signal. When configured as an output, adigital
port outputs O volts when it is off (false) and 5 volts when
itison (true). When configured as an input, adigital port
returns afalse value when the signal islow (nearest O
volts) and true when the signal is high (nearest 5 volts).

Servo S1-S8 Servo portsinterface directly to hobby servo motors.
Servo motors were originally developed for use in model
airplanes and, dueto their light weight, low cost and
simple electronics, are now commonly used in small
robots.

Motor M1, M2 Motor ports interface directly with conventional DC
motors, using pulse width modulation (PWM) to vary the
power output by each motor.

Serial COM1, Seria portsinterface to more complex sensors such as
COM2 cameras and Global Positioning System (GPS) devices.
By attaching a Bluetooth serial adapter to a serial port the
robot can communicate wirelessly to a host computer or
other robots. The COM1 port also serves asthe
connection to a PC when developing a program using the
RoboJDE devel opment environment.

Introducing the IntelliBrain-Bot 3

Port Type Labels Description

1°C 12C

I°C (pronounced i-two-c) ports interface to more advanced
sensors and effectors such as compass sensors and speech
synthesizers. There are five port headers for 1°C devices.
The I?C ports are not numbered individually because I°C
device addressing is controlled in software, not by the
physical connection.

Infrared none The infrared transmitter provides asignal an on/off signal

transmitter

that can be detected by the infrared receiver (described
below). This can be used for simple communication
between robots to signal a Boolean (on/off) value, for
example, signaling another robot to stop or go.

Human Interface Features

In addition to providing the ability to execute a Java program and to interface to sensors
and motors, the IntelliBrain 2 robotics controller provides a number of features which
make it easy to program the robot to interact with people. Table 1-2 lists these features.

Table 1-2 - Human I nterface Features

Device

Description

Liquid Crystal
Display

The Liquid Crystal Display (LCD) screen provides two, sixteen
character lines of output. The LCD isuseful to directly display
sensor readings, providing an easy way to learn about and diagnose
problems with sensors. The display is also useful for providing a
simple menu-based user interface.

Push Button

Two push buttons, labeled START and STOP may be used like the
buttons on a mouse, allowing a human to indicate choices. By
default the buttons start and stop the Java program, but your
program can use them for other purposes.

Thumbwheel

The thumbwheel works like a volume control knob on a car stereo.
It provides a means for usersto vary the setting of an analog value,
such as motor speed, or away to scroll through screens of output on
the LCD display.

Buzzer

The buzzer can be programmed to beep, click or play atune.

Universal remote
control receiver

The universal remote control receiver allows the program to take
input from a universal remote control, giving a human the ability to
remotely control the robot or provide a keyboard type input for a
more sophisticated human interface.

Light Emitting
Diodes (LEDS)

Seven LEDs provide visual indications to humans. Six of these can
be turned on, off or blinked under program control to provide a
visual indication to the user. Three of the program controlled LEDs
are green and three arered. The left most LED is a power indicator,
which illuminates green when power ison. It cannot be controlled
by the program. The LEDs are numbered 1 through 6, starting with
the LED to theright of the power LED.

4 IntelliBrain-Bot Educational Robot Design

Sensors

The IntelliBrain-Bot Deluxe educational robot comes with seven sensors described in
Table 1-3.

Table 1-3 - IntelliBrain-Bot Deluxe Educational Robot Sensors

Sensor Description
Whedl Encoder Two wheel encoder sensors sense movement of the robot’s whedls.
Sensor (2) These sensors use reflected infrared light to senseif ahole or a

spoke isin front of the sensor.

Line Sensor (2) | Two line sensors mounted on the underside of the robot sense the
presence of anon-reflective line. These sensors use infrared light to
sense the reflectivity of the surface below the robot, allowing it to
follow the course of a non-reflective, black line over ahighly
reflective, white background.

Infrared Range | Two infrared range sensors sense the distance to objects between 4
Sensor (2) and 30 inchesin front of the robot. These sensors measure the angle
of reflection of anarrow beam of infrared light to determine the
distance to objects within their range. They can be used to detect
and avoid obstacles in the robot’s path.

Ultrasonic Range | One ultrasonic range sensor senses the distance to an object between
Sensor 1.2 and 118 inchesin front of the robot. This sensor measures
distance by issuing a brief pulse of high frequency sound, a ping,
and precisely measuring the time until the first echo returns. Using
speed-of-sound cal cul ations the distance to an object can be
precisely determined. This sensor can be used to identify far off
objects, walls and hallways. It isalso can be used to create an
invisible “tractor beam,” as you will observe later in this lesson.

Batteries

Chemical energy in the four AA batteries mounted in the battery holder, on the underside
of the chassis, provides the energy to power the motors and electronics.

A Hands-on Demonstration

Now for some fun, let’s take afew minutes to see what the IntelliBrain-Bot educationa
robot can do.

Note: Your lab instructor should have |loaded the IntelliBrain-Bot demo program into the
flash memory of your robot and made sure the batteries are fully charged prior to this
exercise.

The demo program provides examples of the robot using various sensors to perform
different behaviors. It also provides asimple user interface, demonstrating the use of the
IntelliBrain 2 robotics controller’s human interface features, as well as a Sony compatible
universal remote control. Finally, it provides a ssmple means to verify that each sensor is
properly connected and functioning correctly.

Introducing the IntelliBrain-Bot 5

Using the IntelliBrain-Bot Demo Program
The user interface of the IntelliBrain-Bot demo program enables you to toggle through a

list of pre-programmed functions (behaviors) the robot can perform to select the function
you want the robot to demonstrate. Try this by completing the following steps:
1. Switch the power on.
The power switch islocated toward the left side of the rear edge of the
IntelliBrain 2 robotics controller, just left of the push buttons labeled START and
STOP. Slideit toward the front of the robot.
2. Pressthe button labeled “START.”

Thiswill start the demo program. Y ou should see the following displayed on the
LCD screen:

Sel ect Functi on
Do Not hi ng

Thefirst line of text istelling you to select afunction for the robot to perform.
The second line is the name of the function.

3. Pressthe button labeled “STOP.”
The stop button is typically used to stop your Java program. However, it can also
be used for other purposes. The demo program usesit to allow you to scroll
through the list of functions.

Y ou should see the following displayed on the LCD screen:

Sel ect Function
Pl ay Tune

4. Pressthe STOP button repeatedly, observing the various functions which are
available.

The available functions are described in Table 1-4.
5. Continue to press the STOP button until the “Play Tune” function is displayed.
6. Pressthe START button.

The robot will play Beethoven’s tune, Ode to Joy, using the buzzer.

7. Switch the power switch to the off position.

6 A Hands-on Demonstration

Table 1-4 — IntelliBrain-Bot Demo Program Functions

Function Description

Do Nothing The robot does not attempt to move. This allows you to test the
sensors. You will find thisis extremely useful for debugging
sensor problems.

Play Tune Plays Beethoven’s tune, Ode to Joy, using the buzzer.

Remote Control Allows you to remotely control the robot using a Sony compatible

infrared remote control. Use the channel up button to move the
robot forward, the channel down button to move it backward, the
volume up button to rotate right and the volume down button to
rotate left. (Requires a Sony compatible infrared remote control.
Most universal remote controls will work if programmed for a
Sony television.)

Navigate Forward

Uses wheel encoder sensors and navigation classes (provided in
the RoboJDE class library) to navigate the robot straight ahead 24
inches.

Rotate 180 Uses wheel encoder sensors and navigation classes to rotate the
robot in place 180 degrees.
Navigate Square Uses wheel encoder sensors and navigation classes to navigate the

robot around a 16 inch square.

Random Dance

Uses software generated random numbers to perform a dance
made up of random steps.

Follow Line Uses line sensors to enable your robot to follow ablack lineon a
white surface.

Avoid Obstacles Uses wheel encoder sensors, navigation classes, and infrared range
sensors to navigate your robot 24 inches forward and back to
where it started, avoiding obstacles along the way.

Follow Object Uses the ultrasonic range sensor to maintain a distance of 6 inches

from an object in front of your robot, creating a “tractor beam”
effect.

Testing Sensors

Once you have selected a function in the demo program and started it running, the LCD
screen switches to displaying screens which give you a glimpse into the robot’s view of
theworld. Thiswill allow you to verify that all of the sensors are functioning properly.

Let’s peer into the robot’s brain to verify each sensor is operating properly.

1. Switch the power on.

2. PressSTART.

“Do Nothing” should appear on the second line of the display. If it doesn’t, press
STOP repeatedly until it displays.

Introducing the IntelliBrain-Bot 7

3. PressSTART again.

4. Useyour finger to rotate the thumbwheel, observing the different screens which
display as you move the whesl.

The screens are described in Table 1-5.

Table 1-5 - IntelliBrain-Bot Demo Program Screens

Display Description

IntelliBrainBot Displays the program name and version.

L Whesl Displays the current raw analog values reported by the left and

R Wheel right wheel sensors. Turn awheel and observe the change in the
value reported by the associated sensor as spokes and holes passin
front of the sensor.

L Line Displays the current raw analog values reported by the left and

RLine right line sensors.

L Range Displays the current raw analog values reported by the left and

R Range right infrared range sensors.

Sonar Range Displays the distance in inches to the nearest object in front of the
sonar range sensor.

L Enc Displays the current count values maintained by the encoders.

R Enc Turn awheel and observe the change in the count value. Note:
the counter will not sense changes in direction when you turn the
wheel by hand.

Pose Displaysthe x and y coordinates of the robot in inches from the

starting point and the heading in radians, with zero being the
direction the robot was facing when the program started.

Wheel Encoder Sensors

5. Rotate the thumbwheel until you see the display referring to the wheel sensors.

6. Hold therobot in your right hand and use your left hand to slowly rotate the left

whes!.

Observe that the sensor reading displayed to the right of “L Wheel” varies
between alow value of approximately 40 and a high value of approximately 1000
asyou rotate the wheel. (The numbers are the readings of the sensors. In later
chapters you will learn about how the IntelliBrain 2 controller uses its anal og-to-
digital converter to sample sensor readings.)

7. Switch hands and repeat the previous step, this time testing the right wheel sensor.

8 A Hands-on Demonstration

Line Sensors

8. Rotate the thumbwheel until you see the display referring to the line sensors.

9. Set the robot down with the sensors over a bright white surface. For example, the
white area of the line following poster.

Observe that both line sensors report areading, below 300.

10. Set the robot down with the sensors over a non-reflective black surface. For
example, the black line on the line following poser.

Observe that both line sensors report a high reading, above 300.
11. Set the robot down with one sensor over a bright white surface and the other
sensor over anon-reflective black surface. For example, straddling the line on the

line following poster.

Observe that the sensor over the white surface reads low, while the sensor of the
black surface reads high.

Ultrasonic Range Sensor

12. Rotate the thumbwheel until you see the display referring to the left and right
range Sensors.

13. Hold the robot up such that there are no objects within four feet of the robot.
Observe that both sensors read a very low value, typically less than 10.

14. Hold your hand approximately 3 inchesin front of the left range sensor.
Observe the left sensor reading is approximately 500.

15. Repeat the previous step for the right range sensor.

Sonar Range Sensor
16. Rotate the thumbwheel until you see the display referring to the sonar sensor.
17. Hold your hand in front of the sonar sensor.

Observe as you move your hand the distance value displayed on the screen tracks
the distance your hand is from the sensor.

Introducing the IntelliBrain-Bot 9

18. Switch the power off.

“Tractor Beam” Demonstration

The “Follow Object” function of the demo program implements an invisible “tractor
beam” by using the sonar range sensor to maintain a fixed distance of 6 inches between
the robot and an object ahead of it.

1.

2.

6.

Set the robot on the floor with afew feet of clear space around it.
Start the demo program and select the “Follow Object” function.
Place your hand approximately six inchesin front of the robot.
Slowly move your hand away from the robot.

Observe the robot follows your hand forward.

Slowly move your hand toward the robot.

Observe the robot backs away from you hand.

Switch the power off.

Navigation Demonstration

The demo program includes three functions which demonstrate the IntelliBrain-Bot
educational robot’s ability to navigate, “Navigate Forward,” “Rotate 180,” and “Navigate
Square.” These functions use the wheel sensors to keep track of the robot’s position. If it
drifts off course, the program quickly compensates by adjusting power to the motors to
steer it back on course.

1.

2.

Set the robot on the floor with at |east 3 feet of clear space in front of it.
Start the demo program and select the “Navigate Forward” function.
Observe the robot drives straight ahead for 2 feet, then stops.

Press STOP.

Set the robot on the floor and select the “Rotate 180 function.
Observe the robot turns in place approximately 180 degrees.

Press STOP.

Set the robot on the floor with at |east 3 feet of clear spacein al directions.

10 A Hands-on Demonstration

7. Select the “Navigate Square” function.
Observe the robot drivesin a 16 inch square pattern.
8. Switch the power off.

Random Dance Demonstration
The “Random Dance” function of the demo moves the robot in a never ending series of

small random moves. Because the robot has equal probability to move any direction, it
will not drift far from where it started as it performs this unusual dance.
1. Set therobot on the floor with afew feet of clear space around it.

2. Start the demo program and select the “Random Dance” function.

Observe the robot dances about randomly, but doesn’t drift far from where it
started.

3. Switch the power off.

Collision Avoidance Demonstration
One of the primary uses of the infrared range sensor isto avoid collisions with objectsin

the robots path. The “Avoid Obstacles” function of the demo program demonstrates how
the robot can steer around obstaclesin its way.
1. Set therobot on the floor with three feet of clear spacein front of it.

2. Place an object approximately the same size as the robot roughly one foot in front
of the robot.

3. Start the demo program and select the “Avoid Obstacles” function.

Observe the robot will drive to apoint 2 feet ahead of it, detecting and steering
around the obstacle in its path and then return to where it started.

4. Switch the power off.

Line Following Demonstration
In case you haven’t guessed it already, the line sensors enabl e the robot to follow aline

onthefloor. You will need either aline following poster or a one inch wide strip of non-
reflective black electrical tape on awhite surface to complete this demonstration.
1. Set therobot on the floor over the black line.

2. Start the demo program and select the “Follow Line” function.

Introducing the IntelliBrain-Bot 11

Observe the robot follows the line.

3. Switch the power off.

Remote Control Demonstration
The IntelliBrain-Bot educational robot can receive input from a universal remote control.

Y ou will need a universal remote control configured to control a Sony television to
complete this demonstration.
1. Set therobot on the floor with several feet of clear space around it.
2. Start the demo program and select the “Remote Control” function.
3. Pressand hold the next channel button for a moment.
Observe the robot moves forward while you hold the button down.
4. Pressand hold the previous channel button for a moment.
Observe the robot moves backward while you hold the button down.
5. Press and hold the increase volume button for a moment.
Observe the robot rotates clockwise while you hold the button down.
6. Pressand hold the decrease volume button for a moment.
Observe the robot rotates counter clockwise while you hold the button down.

7. Steer the robot around the room using these four control buttons.

8. Switch power off.

Summary

Y ou should now be familiar with the features of the IntelliBrain-Bot educational robot
and its construction. Through the hands-on demonstration you have seen many of the
capabilities you will learn to program yourself in subsequent chapters.

Exercises

1. Completethe partslist in Table 1-6 by inspecting the robot and filling in the
missing information.

2. Locate the ports on the IntelliBrain 2 robotics controller and fill in Table 1-7.

12 Exercises

3. Locate the human interface features of the IntelliBrain 2 robotics controller and
fill in Table 1-8.

4. Trace wiresfrom each sensor and motor to the port on the IntelliBrain 2 robotics
controller it connectsto. Record the label and type of the port in Table 1-9.

5. Using the demo program experiment with each sensor and record the minimum
and maximum reading you observe as you experiment with the sensor in Table
1-10. Note the circumstances when you observed the minimum and maximum
readings for each sensor.

Introducing the IntelliBrain-Bot 13

Table 1-6 - IntelliBrain-Bot Deluxe Educational Robot PartsList

Qty | Part Description

1 Acts as the robot’s brain by executing a Java programs and
interfacing to sensors, motors and humans.

1 Aluminum chassis

2 Servo motor

2 Coverts torque of from the motor shaft to force to move the
robot forward or back.

1 Ball tail wheel

Tire Provides traction (friction) so the wheels don’t dip.

2 Uses reflected infrared light to enable the robot to sense and
follow aline on the floor.

2 Uses reflected infrared light to enable the robot to sense the
distance to an object between 4 and 30 inches away.

1 M easures the time between high frequency sound pulses and
their echoes to sense the distance to an object between 1.8
and 118 inches away.

2 Usesreflected infrared light to sense rotation of awhedl,
enabling the robot to track its position monitoring wheel
movement.

Battery holder Holds the batteries on the underside of the chassis.

4 Batteries
Aluminum Used to mount the robotics controller, line sensors and
standoff ultrasonic range sensor.
1” corner bracket | Used to mount infrared range sensors.
Right angle bracket | Used to mount line sensors and ultrasonic range sensor.
Screws Used to fasten parts together.
Nuts Used to fasten parts together.
Washer Aluminum or nylon washer used in mounting sensors.
Cotter pin Used to attach tail wheel.

14 Exercises

Table 1-7 — IntelliBrain 2 Robotics Controller Ports

Port Type

Labd(9)

L ocation

Servo motor

Anaog

Digital

1°C

M otor

Serial

Table 1-8 — IntelliBrain 2 Robotics Controller Human I nter face Featur es

Feature

Label(9)

L ocation

Liquid Crystal
Display

- none -

Push button

Thumbwheel

Buzzer

Universal
remote control
receiver

- none -

Introducing the IntelliBrain-Bot 15

Table 1-9 — IntelliBrain-Bot Deluxe Educational Robot Sensor and Motor Connections

Sensor /M otor Port (Label) Port Type
L eft servo motor

Right servo motor

Left whedl encoder sensor

Right wheel encoder sensor

L eft infrared range sensor

Right infrared range sensor

Left line sensor

Right line sensor

Ultrasonic range sensor

16 Exercises

Table 1-10 — Sensor Readings

Sensor

Min

M ax

Notes

Left wheel encoder
sensor

Right wheel
encoder sensor

Left infrared range
sensor

Right infrared
range sensor

Left line sensor

Right line sensor

Ultrasonic range
sensor

Introducing the IntelliBrain-Bot 17

CHAPTER 2

Programming the IntelliBrain-Bot

In the previous chapter you became familiar with the hardware features of IntelliBrain™-
Bot Deluxe educational robot. Y ou also observed the robot in action by working with the
demo program. In this chapter you will begin to learn about the software features of the
robot, as well as robotics programming concepts, the focus of this book. Y ou will use the
RoboJDE™ Java™:-enabled robotics software development environment to create, build,
load and run your first program. Y ou will also learn debugging techniques which will
help you quickly resolve problems with your program.

Note: The RoboJDE development environment should be installed on the computer you
will be using prior to proceeding with the hands-on activitiesin this chapter. Your lab
instructor has most likely already taken care of this. However, if you are working on

your own, follow the instructions in the RoboJDE User Guideto install the RoboJDE
software.

Creating a New Project

To begin a new project you must create a new RoboJDE project file to store the project’s
properties. RoboJDE uses project filesto make it easy for you to switch between
different robotics software projects. Use the following procedure to create a project
named “MyBot:”

1. Start the RoboJDE development environment from the Windows start menu. The
default location on the start menu is start->All Programs->RoboJDE->RoboJDE.

The RoboJDE Graphical User Interface (GUI) will appear.
2. Select File->New Project menu item in the RoboJDE GUI.
The Project Properties dialog will appear.
3. Click the browse button to the right of the “Project folder” field.

The Choose File dialog will appear.

19

4. Browseto and select the folder in which you want to create your project.

Note: You can create a new folder by browsing to the location where you want to
create anew folder then clicking on the create folder button. A folder titled “New
Folder” will appear. Click on the new folder’s name and change it to a name you
choose. Then click on the folder icon to the left of the name to select it. Click
OK.

Enter the name “MyBot” in the “Main class” field.
Click OK.

The MyBot class will be created, as shown in Figure 2-1.

RE RoboJDE - MyBot.rjp
File Edit Project Tools Help

BEH DBOHE RM ~[A @ >0 Q@

MyBotjava |

public class MyBot {
public static void maini(3tring args[]) |
A4 add your code here

1

L] |5: |]

Edit | Run

Figure2-1 - MyBot Project in RoboJDE

7. Using the mouse, select the text “// Add your code here” and replace it with

“System.out.printin(“Y ourName”);” replacing Y ourName with your name, so
your program looks similar to the following:

public class MyBot {

public static void main(String args[]) {
Systemout.println("M. Roboto");
}

Note: Javaisvery particular about details such as upper and lower case |etters

20 Creating a New Project

and punctuation. Paying careful attention to these details will save you alot of
time and frustration debugging subtle errorsin your programs!

8. Click the Save all button (see Figure 2-2) or select the File->Save All menu item.
The Save dialog will appear with “MyBot” as the proposed file name.

9. Click the Save button to save your project.

Open project Properties Save Savedl Build Load Run Stop

-4 - A
BE DBOHB RM ~[AE e O@

N f /A

New Open Close Load location User Guide API Doc.

Figure 2-2 - RoboJDE Tool Bar

Your first program is now ready to try out. First you must connect the robot to your
computer. Thiswill enable you to download your program into the IntelliBrain 2
robotics controller’s memory.

Connecting the Robot to Your Computer

RoboJDE communicates with the IntelliBrain-Bot educational robot viaa seria port on

your computer. All you need to do to establish a connection is connect a cable between
the port labeled “COM1” on the IntelliBrain 2 robotics controller and the serial port you
will be using on your computer.

Note: Your lab instructor should have already attached the cable to the serial port on
your computer and configured appropriate settings in RoboJDE. However, if thisis not
the case, please consult the IntelliBrain 2 User Guide and RoboJDE User Guide for
further instructions.
Connect the robot to your computer by doing the following:

1. Locate the load button on the RoboJDE tool bar (see Figure 2-2) and note its state.

When the RoboJDE GUI is unable to communicate with the robot the load button
will appear gray, asit doesin Figure 2-1. Since the robot is not currently
connected to your computer the button is gray.

2. Gently attach the free end of the serial cable to the port labeled “COM1” on the
IntelliBrain 2 robotics controller.

Programming the IntelliBrain-Bot 21

Note: The cable will slide on to the connector more easily if you gently rock the
cable left and right as you pressit on to the connector. Although the connector on
the robot is quite sturdy, be careful not to apply excessive force, which may
damage the robot.

3. Switch the power on.

If the cable is connected properly and the RoboJDE communication settings are
correct, the Load button will go from gray to green.

If the Load button did not turn green, request help from your lab instructor to
ensure the settings in RoboJDE (Tools->Settings) and the baud rate setting in the
IntelliBrain 2 robotics controller are correct. 1n most cases the baud rate should
be set to 115.2K in both the RoboJDE GUI and on the IntelliBrain 2 robotics
controller. Also check to be sure the Serial Port setting in the RoboJDE GUI is
the port the cable connects to on your computer. Finally, be sure the Board Type
setting in the RoboJDE GUI is set to “IntelliBrain.”

4. Switch the power off.

Running Your First Program

Everything is now set to give your program atry. You will need to build it, download it
and run it. Fortunately, thisis much easier than it sounds— only two mouse clicks!

Do the following to give your program atry:

1. Switch the power on.

2. Click the Load button in the RoboJDE GUI.
Thiswill compile, link and load your program. Y ou will see messages from the
compiler and linker in the output window at the bottom of the RoboJDE GUI
window. If you typed everything correctly, there will be no errors and the Load
progress window will display briefly. If you made a mistake, you will see error
messages in the output window.

Once the Load progress window disappears, the LCD screen on the robot will
display the following message on the second line:

Ready - RAM

Thisindicates there is now a program loaded in Random Access Memory (RAM)
which isready to run.

3. Click the Run button on the RoboJDE tool bar to run your program.

22 Running Your First Program

Y our program will run very quickly. If you watch the LCD screen you will see
your name appear momentarily. Click the Run button again if you missed it.

Also notice the RoboJDE GUI switched to its Run window, where your name was
also output by your program. By default, any output to “System.out” goes to both
the LCD screen and the RoboJDE Run window if the serial cable is connected.

4. Pressthe START button.

This also runs your program, but without clearing the output in the RoboJDE Run
window. Each timeyou pressthe START button another line displaying your
name will appear.

5. Switch power off.

Congratulations! 'Y ou have now created and run your first robotics program!

Programming Concepts

If thisisthe first program you’ve ever created or you are new to Java, you are probably a
little vague on many of the concepts we’ve covered so far. If you don’t fully understand
your program, rest assured, as you work through the hands-on lessons in this book your
understanding will become clearer.

What is a Program?

A program is a series of instructions a computer executes in steps. The computer
executes one step then proceeds on to the next step, executing it and proceeding on to the
next step, and so on, repeating this process until it reaches the end of your program.

Another way to think of aprogram isasarecipe. With arecipe, the chef isthe computer.
He or she “executes” the recipe by starting at the beginning and following the stepsin
order. Likewise, acomputer executes your recipe (program) step by step.

The Method Named “main”

In the case of the IntelliBrain-Bot educational robot, the IntelliBrain 2 robotics controller
isasmall computer. It executes the steps of your program. It begins executing your
program in the method named “main.”

Look for the word “main” on the second line of the program you just created. Thisisthe
start of the main method. Y our program begins executing on the line after this— the line
that contains your name. Your program isvery smple. It has only one step, which prints
your name. Once the robotics controller executes this step, it reaches the end of the main
method and exits your program, which explains why your name was only displayed on
the LCD screen for a split second.

Programming the IntelliBrain-Bot 23

Y ou can change this behavior by adding one more step to your program that will wait for
the STOP button to be pressed. Thiswill cause your program to display your name then
wait for you to press the STOP button before exiting. Do this as follows:

1.

7.

Add the following import statement as the first line of your program

i mport comridgesoft.intellibrain.IntelliBrain;

Thistells he compiler your program will be using the IntelliBrain class from the
classlibrary.

Add a statement to wait for the STOP button to be pressed after your name has
been printed, so your program looks similar to the following:

i mport comridgesoft.intellibrain.lIntelliBrain;
public class MyBot {
public static void main(String args[]) {
Systemout.println("M. Roboto");
IntelliBrain.getStopButton().waitPressed();

}
}

Switch power on.
Click the load button.

Click the run button in the RoboJDE GUI or pressthe START button on the
robot.

Observe your name does not disappear from the LCD screen. Thisis because
your program is waiting for the STOP button to be pressed.

Press the STOP button.

Observe your program has stopped running and your name is no longer displayed
on the LCD screen.

Switch power off.

Y our program now includes two steps, one which tells the computer to display your name
and another which tells the computer to wait for someone to press the STOP button.

Your programming Process

Asyou develop programs for your robot you will become very familiar with your
programming process, which isillustrated in Figure 2-3. Y ou will use this process over
and over to program the IntelliBrain-Bot educational robot. Each time you create a new
program or make a change to an existing program, you will complete the following steps:

24 Programming Concepts

1. Edit —add, modify or delete stepsin your program (use the RoboJDE edit
window).

2. Build — compile, link and download your program to the robot (click the load
button).

3. Test —test your program (click the run button on the RoboJDE tool bar or press
the START button on the robot).

Edit Build Test
010110 ||
110100
100110
Class Library
p— 010110 010110
o : 110100 110100
ey | = | |[Coomie > || [k » |1 [ioag
_— 011111 011111
MyBot.java MyBot.class MyBot$.hex

Figure2-3— TheIntelliBrain-Bot Educational Robot Programming Process

Y ou have now completed this process twice, once when you created your first program,
and again when you added a step to it. Y ou will repeat it many more times as you
develop larger and more sophisticated programs.

Most seasoned programmers develop programs iteratively, making only one small change
at atime, testing it, then moving on to the next small change, and so on, until they have
completed their project. Making and testing many small changes has an advantage over
making fewer large changes. It ismuch easier to thoroughly test your changes, as well as
find and fix problems, when you haven’t made large changes. By keeping changes small,
you focus your attention one very small area. If your program doesn’t work after you
have changed it, it will be easier to resolve the problem if you haven’t made alarge
change. We recommend you follow this approach whenever possible, making and testing
small changes, rather than attempting large changes.

Behind the Scenes

Let’stake acloselook at Figure 2-3 to examine what goes on behind the scenes. If you
browse to the folder where you created your program you will see the following files:

MyBot.java — the Java source file

MyBot.class - the Java class file generated by the compiler
MyBot$.hex — the executable file generated by the linker
MyBot.rjp — afile containing the project’s properties

PwWNPE

Programming the IntelliBrain-Bot 25

The text you entered into the RoboJDE edit window to define the MyBot Java class was
saved in the file named MyBot.java. Thisisthe Java source file for your main Java class,
MyBot.

When you clicked the load button, three things took place. The MyBot program was
compiled, linked and loaded, as depicted in the block labeled “Build” in Figure 2-3. In
thefirst step, the MyBot class was compiled from its source file, MyBot.java. This
generated the Java classfile, MyBot.class. In the second step, the MyBot.class file was
linked with other classes MyBot references, which are included in the class library. The
class named “System,” is a class from the class library which is referenced by your
program. The linked program was stored in the executable file, MyBot$.hex. Finadly,
the executable file was transferred via the serial cable and loaded into the memory of the
IntelliBrain 2 robotics controller, which alowed it to be run and tested.

The compiler parses and analyzes the text in a Java source file and produces binary “byte
codes,” which the RoboJDE Java virtual machine can execute. The virtual machine
resides on the IntelliBrain 2 robotics controller and enables it to execute Java code rather
than native machine code particular to the microcontroller chip at the core of the
IntelliBrain 2 robotics controller.

The linker assembles all of the classes that are needed to execute your program into a
singlefile. While doing this, the linker also creates the necessary linkages between the
classes. These linkages provide the virtual machine with the information it needs to
understand how the classes interact to form your program. Y ou only had to create one
very small Java class to create your program, but your program cannot execute without
including many more classes from the class library. Y ou can see how many classes are
included in the executable by reviewing the output from the linker at the bottom of the
RoboJDE edit window. Surprisingly, your simple program references approximately
fifty other classes from the classlibrary! The classesin the library provide arich
foundation on which you create your programs. This allows you to focus your effort on
the algorithms that control your robot, rather than getting bogged down in low level
details.

Debugging Your Programs

If you are like most programmers, your programs will rarely work on the first try.
Typically, once you finish making edits, you will find you are faced with one or more
compilation errors. Y ou will need to make further edits to your program to correct your
errors. Once your program compiles and links successfully, you will be able to download
it to the robot and run it, but you will frequently find it doesn’t do what you expect. When
this happens, you will need to analyze what your program is doing and determine what
changes are necessary to make it do what you intend.

The ability to debug problemsis an essential programming skill. You will be able to
complete your programming projects faster and your programs will often work better if
you take the time to develop and apply debugging skills. In contrast, if you try to
program without learning how to debug effectively, you will likely find programming a

26 Debugging Your Programs

frustrating experience. Take the timeto analyze and understand problems. It will make
you a better programmer and you will find programming more enjoyable!

Compilation Errors

In order to convert your programs from the text you enter, which is called “source code,”
into Java byte codes the RoboJDE Java virtual machine can execute, the compiler needs
to read your source code, understand it, and trandlate it to a form the virtual machine
understands. Conceptually, thisis similar to translating a document from aforeign
language to your native language. In order to transate such a document you would apply
your knowledge of the vocabulary and grammar of the foreign language to understand the
source document. Once you understood it you could then express it’s meaning using the
vocabulary and grammar of your native language.

Imagine if you were given the task of translating a document that was full of spelling
errors, slang, poor grammar, punctuation errors and ambiguities. Thiswould make your
tranglation job much more difficult. 1t’slikely you wouldn’t have alot of confidence that
you could accurately communicate the thoughts and emotions of the author in your
tranglated version.

Similarly, the Java compiler isn’t able to reliably convert your Java source code to
executable code if it contains misspellings, incorrect grammar, words the compiler
doesn’t know, poor punctuation and ambiguities. Rather than trying to guess what you
intended the Java compiler outputs an error message for each problem it encounters.
Each error message indicates where in your source code the compiler encountered a
problem followed by a message describing the problem.

Let’s run some experiments to see what the compiler does when you introduce errors into
your program. Try the following:

1. Edit thefifth line of your program to replace the period between “out” and
“println” with acomma so it looks like this:

System out, println("M. Roboto");
2. Click the build button (wrench icon) on the RoboJDE tool bar.

Observe the compilation error reported in the output pane at the bottom of the edit
window. You will see an error message similar to the following:

Found 1 syntax error in "MyBot.java":
5. System out, println("M. Roboto");

N

*** Syntax: . expected instead of this token

Thefirst line of the message indicates there is a syntax error in MyBot.java. The
second line shows the problem line from your program and the number of the

Programming the IntelliBrain-Bot 27

ling, to the left. The third line indicates the location of the error in the problem
line using a carat (") character. The fourth linetells you what the problem is. In
this case, the compiler expected a period instead of the “token” pointed to by the
carat, acomma.

3. Select the menu item Edit->Go to Line in the RoboJDE GUI or enter Ctrl-G using
the keyboard.

The Go to Line dialog will appear.
4. Enter the number of the line with the error, “5” and click OK.

RoboJDE will scrall to the line and highlight it. Since your program is very short,
this may not seem necessary. When your programs get larger you will find this
feature very useful. For example, if you had an error on line 327 of a500 line
program, you would really appreciate being able to jump right to the line rather
than having to scroll around looking for it!

5. Correct the error and click the build button, again.

There are too many possible compilation errors to discuss them all here. The key to
debugging them is to carefully read the messages from the compiler and understand what
they aretelling you. Always scroll up to thefirst error message and try to fix it first.
Subsequent error messages are often due the first problem. When you fix the first
problem, it is often best to re-compile immediately because the fix may eliminate
subsequent errors. Re-compiling is quick and easy, so don’t hesitate to do it often. Just
click the build button or load button on the RoboJDE tool bar.

Exceptions and Stack Traces

In addition to encountering errors when you compile your programs, the virtual machine,
which executes your program on the robot, is able to catch many errors that can only be
detected while your program isrunning. For example, if your program attempts to use
more memory than is available, the virtual machine will detect the problem and “throw
an exception.” There are many other types of exceptions, such as attempting to divide by
zero, or attempting to use areference to an object when the reference is “null” (not
referring to any object).

Without going into all of the details of exceptions, let’s take a quick look at what you will
see when an exception gets “thrown.” We make a small change in your program to
switch to using a variable to keep track of your name, but we will introduce a bug while
making this change. Do the following:

1. Insert the following line into your program as the second line:

private static String myNane;

28 Debugging Your Programs

Thisline creates a variable to keep track of you name.

Modify the printing statement in your program, replacing the quoted string
containing your name with name of the new variable, so your program looks like
this:

i mport comridgesoft.intellibrain.IntelliBrain;
public class MyBot {
private static String myNane;
public static void main(String args[]) {
System out . printl n(nyNane) ;
IntelliBrain.getStopButton().waitPressed();

}
Switch the power on.

Click the load button to build and download your program.
Click the run button.

Y ou will seethe following in the run window:

NullPointerException
at java.io.PrintStream.print(PrintStream.java:44)
at java.io.PrintStream.printin(PrintStream.java: 96)
at MyBot.main(MyBot.java:5)
at com.ridgesoft.intellibrain.StartupThread.run(StartupThread.java:31)

Thisisthe type of output you will see when your program causes an exception to
be thrown. Inthis case, the exception is a “Null PointerException.” The lines that
follow indicate exactly which statements in your program resulted in the
exception being thrown. Thisisa“stack trace.” This stack trace shows your
program was executing the PrintStream class’s print method at line 44 of afile
named PrintStream.java when an attempt to use anull reference (pointer)
occurred. This class happensto be in the RoboJDE class library and is most
likely not the source of problem, it’s just where the problem showed up. The next
line of the stack trace shows the print method was called by the printin method,
again in the PrintStream class. The third line of the stack trace indicates line 5 of
the MyBot class called the println method.

Click the Edit tab in the lower left corner of the RoboJDE GUI.
. Type Ctrl-G at the keyboard.

Enter 5, the line indicated in the stack trace, in the Go to Line dialog and click
OK.

Thiswill show you the line in your program that was executing when the

Programming the IntelliBrain-Bot 29

Null PointerException occurred. Examining thisline you will seeit does indeed
cause the println method to execute, as the stack trace indicated. Thisistheline
you just modified to switch to using the new variable you added. The

Null PointerException must be due to this change.

When you added the new variable to your program, we neglected to tell you to
initialize the variable with your name, therefore, the variableisnull. Thisisa
bug.

8. Correct the bug by initializing the variable with atext string containing your
name, similar to the following:

private static String nyName = "M . Roboto";
9. Click the load button.
10. Click the run button.
Observe your program once again works correctly!
11. Switch the power off.

Debugging Using Print Statements

Frequently your programs will compile and run just fine but still not work the way you
expect. Often, the best way to solve these types of problemsisto add print statements to
your program. Thiswill enable you to better understand what your program is doing.
Being able to peer into your robot’s mind is such a valuable debugging and test tool that
itisagood ideato start by implementing these features first, knowing they will come in
handy as you develop the main features of your program. For example, when working
with anew sensor, agreat place to start is by displaying the sensor’s reading on the LCD
screen. Thisallows you to check that the sensor is connected and functioning properly.

Let’s add a print statement to your program to indicate when the STOP button has been
pressed.

1. Addthefollowing print statement to your program immediately after the
statement to wait for the button to be pressed.

Systemout. println("STOP pressed!");
2. Click the load button to build and download your program.

3. Click the run button.

Observe your program has printed your name in the RoboJDE Run window.

30 Debugging Your Programs

4. Pressthe STOP button.

Notice, unfortunately, the new message you just added did not display. Y our
program is not working quite the way you may have expected!

5. Add another print statement just before the statement to wait for the button to be
pressed.

Systemout.println("Waiting for STOP");

6. Build and run your program again.

Observe your new message does show up in the RoboJDE run window and on the
L CD screen, but the message indicating the STOP button has been pressed till
does not display.

It turns out your program has aminor bug init. The virtual machine, which
executes your program, assumes by default it is responsible for monitoring the
STOP button. When the button is pressed the virtual machine immediately stops
your program rather than letting it continue. In this case, the new print statement
never executed because the virtual machine stopped your program before it got to
the print statement.

This problemis easy to fix.

7. Insert the following statement just before the statement that prints “Waiting for
STOP:”

IntelliBrain.setTerm nateOnStop(fal se);

Thistells the virtual machine it should not terminate your program when the
STOP button is pressed.

Y our program should now be similar to the following:

import comridgesoft.intellibrain.IntelliBrain;
public class MyBot {
private static String nmyNane = "M . Roboto";
public static void main(String args[]) {
System out . printl n(nyNane) ;
IntelliBrain.setTerm nateOnStop(fal se);
Systemout.println("Wiiting for STOP");
IntelliBrain.getStopButton().waitPressed();
System out. println("STOP pressed!");

}
8. Load and run your program.

Programming the IntelliBrain-Bot 31

Observe, your program now prints all of the messages, as expected. Y ou have
debugged the problem!

Other Methods of Debugging

There are many other ways to debug your programs. In later chapters you will learn
about programming the IntelliBrain controller’s Light Emitting Diodes (LEDs) and its
buzzer. These provide additional means of indicating what your program is doing.

Summary

Now that you have created your first program and made a number of modificationsto it,
you should be familiar with the process of programming the IntelliBrain-Bot educational
robot. Y ou should also be familiar with the types of errorsyou are likely to encounter as
you continue to learn about programming the robot. If you encounter problemsyou are
unable to resolve, refer back to this chapter to remind yourself of the debugging
techniques you have learned.

Exercises
1. Create anew project and program to output the message: “Testing 1 2 3.”

2. Briefly describe what a computer programiis.

3. Describe the differences between a Java source file, a Java class file and an
executablefile. If you created a program with the main class named “Test” what
would be the names of the sourcefile, class file and executablefile.

List the three main steps that comprise the programming process.
Describe what the compiler does.

Describe what the linker does.

Describe the purpose of the class library.

Describe what happens when you download a program to your robot.

© o N o g A&

Modify your program to introduce a compilation error. Write down the error
message you receive. Describe how the message relates to the actual error in your
program. Fix thiserror and introduce a different error, repeating this process until
you have caused at |east three different error messages to be emitted from the
compiler.

10. If you were to receive an exception from a program with a stack trace containing
the following line of text: “at Test.main(Test.java:173),” what does thistell you?
How could you further investigate the source code that relates to this message?

32 Exercises

CHAPTER 3

Maneuvering the IntelliBrain-Bot

Now that you are familiar with how to create, build and test programs for the
IntelliBrain™-Bot educational robot, you are probably eager to program your robot to do
more than just display your name. We will now do just that, by learning how to program
the robot to maneuver. In addition, you will aso learn how to use the RoboJDE™ API
documentation and other documentation to help you accomplish your programming tasks.
Y ou will also use afew more features the Java™ programming language.

Differential Drive Robots

The IntelliBrain-Bot educational robot uses a differential-drive system to enable it to
move and steer. Thismay sound complicated, but it isreally very simple. There are two
wheels, powered by two independently controlled motors. Y our program will control the
speed and direction of the robot by controlling the power delivered to each of the motors.
Asillustrated in Figure 3-1, your program can make the robot perform afew basic
maneuvers simply by controlling the direction of rotation of each of the motors. The
robot will move forward when your program applies the same amount of power to both
motors. The robot will rotate in place if your program applies the same amount of power
to the motors but in the opposite direction. Applying reverse power to the left wheel and
forward power to the right wheel will cause the robot to rotate counter-clockwise.
Likewise, applying forward power to the left wheel and reverse power to the right wheel
will cause the robot to rotate counter-clockwise.

Rotate
Counter- Drive Rotate
clockwise Forward Clockwise
| | |

Figure 3-1 - Maneuvering a Differential Drive Robot

33

Programming Simple Maneuvers

The IntelliBrain-Bot educational robot uses continuous rotation hobby servosfor its
motors. These motors are based on hobby servos, which were originally designed for use
in model airplanes. Standard hobby servos have built-in control circuitry and mechanics
designed to rotate the servo’s output shaft to a specific position and hold that position.
Thisworkswell for controlling amodel airplane, but it isn’t suitable for driving the
wheels on arobot.

Robotics researchers discovered hobby servers could be easily modified for continuous
rotation, to provide inexpensive motors to drive the wheels of their robots. They did this
by removing the mechanical stops and disabling the position sensing circuitry in the
servos. Fortunately, this became so common that you can now buy servos manufactured
for continuous rotation, eliminating the need to modify them yourself. The servos
included in the IntelliBrain-Bot educational robot were manufactured as continuous
rotation servos.

While continuous rotation servos can power your robot’s wheels just like conventional
DC motors, they must be controlled using their built-in control circuitry. This circuitry
includes a position input signal intended to communicate the desired position of the
servo’s output shaft. For continuous rotation servos the position signal actually controls
the direction of rotation and amount of power applied to the motor. Rather than working
directly with control signals of the servos, the RoboJDE class library provides a class,
ContinuousRotationServo, which provides a “wrapper,” which enables your program to
control the servos as if they were conventional motors.

Before we get started writing a program to control the servos, let’sfirst investigate the
classes we will use from the class library.

Using the Programming Documentation

Before you embark on any programming project you first need to understand how to
accomplish the task at hand. A good way to do thisisto consult the programming
documentation. The following documents that will help you understand how to program
the IntelliBrain-Bot educational robot: the IntelliBrain 2 API Quick Reference, the
IntelliBrain 2 User Guide and the RoboJDE Application Programming Interface (API)
Documentation.

The quickest way to learn about programming IntelliBrain 2 featuresis to consult the
IntelliBrain 2 APl Quick Reference. This can be found on the inside of the back cover of
this book, or in the file IntelliBrain2API.pdf in “docs” folder where RoboJDE isinstalled.
It isalso available online at www.ridgesoft.com. Take a moment to locate the quick
reference document and identify information regarding programming the servo ports.

Further details regarding the many features of the IntelliBrain 2 robotics controller are
provided in the IntelliBrain 2 User Guide. Take a moment to locate this document and
read the section regarding the servo ports. The IntelliBrain 2 User Guide is available at
www.ridgesoft.com and on the CD-ROM that came with the robot.

34 Programming Simple Maneuvers

The RoboJDE API Documentation contains the most detailed programming information.
It isessential that you become familiar with using the API documentation. Y ou will refer
to it frequently as you program the IntelliBrain-Bot educational robot. The RoboJDE API
Documentation is in Javadoc format. Thisis the format used to document most Java
APIs. Becoming proficient at using the RoboJDE API documentation will help you
become proficient at using similar documentation for other Java programming projects.

BPE DBOHE rM ~AE »e ©@
/

API Doc.

Figure 3-2 - API Documentation Button on RoboJDE Tool Bar

Click the APl documentation button on the RoboJDE tool bar (shown in Figure 3-2) to
display the APl documentation in your web browser. Thiswill launch your web browser
and display the documentation, as shown in Figure 3-3.

_ff IntelliBrain (RoboJDE AP| Documentation v1.5) - Windows Internet Explorer

’@ § - IéC:\Prngram Files\RoboIDE\apidoc % || *+ | K Faiid
fl o [;) »
8 4| @ InkeliBrain (RoboIDE A1 Docume... : v B - b v [sheage - G Tods -
-~ ~
2
RoboJDE™ v1.5 getServo K
All Classes 3
< > public static Servo getServo(int serwvao)
1 w _ Gets the Servo object for the specified servo.
Inputstream
Integer
IntelliBrain Parameters:
IntelliBrainAnalogingt servo - number of the sero (1 -).
IntelliBrainDigitall o + IntelliBrain 2: 1 - §
IntelliBrainExpDigitall + IntelliBrain main board: 1 - 2

IntelliBrainlrReceiver
IntelliBrainPinPort
IntelliBrainShaftEncor Returns:

InternalError Servo object

In'a“llr’"ﬂrvarﬂr“'\F;v b’ o

+ IntelliBrain expansion board: 3 - §

} Iy Computer H o0 v

Figure 3-3 - IntelliBrain APl Documentation

The documentation for the IntelliBrain classis the best place to start when you are
learning about a feature you have not used before. Y ou can display the documentation
for the IntelliBrain class by scrolling to and clicking on the class name in the list of
classes, asindicated by reference 1 in Figure 3-3. Thiswill display documentation for the
classin the pane on the right hand side. By browsing through the class documentation,
you can find the methods to access various features of the IntelliBrain or IntelliBrain 2
robotics controller.

Compl ete the following steps to learn about the programming interface you will be using
to control the servo motors:

1. Locate the APl documentation for the IntelliBrain class.

Maneuvering the IntelliBrain-Bot 35

2. Locate the documentation for the getServo method of the IntelliBrain class.
3. Locate and review the documentation for the ContinuousRotationServo class.
4. Locate and review the documentation for the Motor interface.

Programming the Robot to Drive Forward

Y ou should now have a general idea of how you can maneuver write a program to
maneuver the robot. The robot will perform maneuvers determined by how your program
applies power to the motors. Y our program can control the motors viathe RoboJDE API.
Let’s put thisinformation to use by programming the robot to drive forward.

The IntelliBrain-Bot educational robot uses servo port 1 for the left servo and servo port
2 for the right servo. In order to control the power applied to the motors your program
will need to get the Servo objects for these ports and wrap them in
ContinuousRotationServo wrappers, which give them Motor interfaces. Thiswill enable
your program to control the motors using the setPower method.

Completing the following steps to program the robot to drive forward:
1. Create anew project named “Maneuver.”

2. Add import statements for the classes and interfaces your program will be using:
IntelliBrain, Motor and ContinuousRotationServo.

i mport comridgesoft.intellibrain.IntelliBrain;
i mport comridgesoft.robotics. Mtor;
i mport comridgesoft.robotics. ContinuousRotati onServo;

Note: Import statements refer to pre-built classes your program “imports” from
the classlibrary, which iswhere all of the classes referred to in the API
documentation exist. The import statements refer to the full name of each class,
which includes the name of the package to which the class belongs. The package
name appears immediately above the class name at the top of the API
documentation for each class.

3. Add line at the beginning of the main method to output a message identifying
your program.

System out. printl n("Maneuver");

4. Create left and right motor objects by retrieving the objects for servo ports 1 and 2
from the IntelliBrain class and using them to create a ContinuousRotationServo
object for each servo. The sense of direction of the right servo is opposite that of
the left servo, so it must be reversed by specifying “true” for the reverse
parameter. A range value of 14 works well for the servos used on the
IntelliBrain-Bot educational robot.

36 Programming Simple Maneuvers

Motor |eftMtor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(l), false, 14);
Mot or right Motor =
new Conti nuousRot ati onServo(IntelliBrain.getServo(2), true, 14);

5. Add two steps to use the setPower method to set both motors to maximum
forward power.

| ef t Mot or. set Power (Mot or . MAX_FORWARD) ;
ri ght Mot or. set Power (Mot or . MAX_FORWARD) ;

o

Place a step at the end of the main method to wait for the STOP button to be
pressed so your program will not terminate until the STOP button is pressed.

IntelliBrain.getStopButton().waitPressed();

~N

Connect the serial cable to the robot and switch power on.
8. Build and download your program to the robot.

9. Disconnect the serial cable.

10. Place the robot on the floor in an open area.

11. Pressthe START buitton.

12. Follow the robot and pick it up or press the STOP button before it crashes into
anything.

Programming the Robot to Rotate in Place
Referring back to Figure 3-1, all that you need to do to make the robot rotate in place

instead of driving straight ahead is reverse the direction your program applies power to
one of the wheels.
Compl ete the following steps to make the robot rotate in place:

1. Modify the setPower step for the left motor to apply reverse power.

| ef t Mot or . set Power (Mot or . MAX_REVERSE) ;

2. Connect the serial cable to the robot and switch power on.
3. Build and download your program to the robot.

4. Disconnect the serial cable.

Maneuvering the IntelliBrain-Bot 37

5. Place the robot on the floor in an open area.
6. Pressthe START button.

Observe the robot will rotate in place counter-clockwise.
7. Pressthe STOP button and switch power off.

8. Change your program such that the left motor is powered forward and the right
motor is powered in reverse.

| ef t Mot or . set Power (Mot or . MAX_FORWARD) ;
ri ght Mot or . set Power (Mot or . MAX_REVERSE) ;

9. Download and run your program.
Observe the robot will rotate in place clockwise.

Programming the Robot to Drive in a Circle

Y our first guess might be that it has got to be very difficult to program the robot to drive
inacircle. However, itissurprisingly easy! All that you haveto do is apply more power
to one motor than to the other. Thiswill make one wheel rotate faster than the other and
the robot with follow an arced path and drivein circles.

Program the robot to drive in a circle by completing the following steps:

1. Change your program to provide full power to the left motor and half power to the
right motor. Consulting the APl documentation for the Motor interface you will
see that the value for full power forward is 16, which is the value of the constant
Motor.MAX_FORWARD you’ve been using thus far.

| ef t Mot or. set Power (16) ;
ri ght Mot or. set Power (8);

2. Download and run your program.

Observe the robot will drivein acircle.

Combining Simple Maneuvers

Y ou can program the robot to perform more advanced maneuvers by executing
combinations of simple maneuvers. For example, you can program it to drive in asquare
by programming it to drive forward briefly then rotate 90 degrees then drive forward
again, repeating the sequence four timesin arow.

Y ou’ve programmed the robot to drive forward forever and rotate in place forever. In
order to drive in asquare you’ll have to limit how long it does each of these ssmple
maneuvers. You can do this by having your program issue commands to the motor then

38 Combining Simple Maneuvers

sleep while the motors run. When your program wakes up it will issue the next command
and sleep until it is done.

Modify the Maneuver program to program the robot to drive forward for 2 seconds, as
follows:

1.

Change the setPower commands back to powering both motors forward at
maximum power.

Browse to and review the documentation for the sleep method of the Thread class
in the APl documentation. Note this method allows your program to sleep for the
number of milliseconds it specifies. The method aso throws an
InterruptedException. We don’t need to be concerned with this exception for this
exercise, but the Java compiler will insist that we provide code to catch it.

Add acall to the sleep method of the Thread class and an associated try-catch
block immediately following the set power commands to instruct your program to
sleep for 2000 milliseconds (2 seconds).

try {
Thr ead. sl eep(2000);

catch (InterruptedException e) {}

The sleep method of the Thread class causes the computer to stop executing
(sleep) for the specified number of milliseconds. We have placed thiscall ina
try-catch block because the sleep method may throw an InterruptedException.
We are not concerned about the possible exception, so we have |eft the catch
block empty. Theloop will simply continue executing if the sleep call is ever
interrupted.

Delete the line which causes your program to wait for the STOP button to be
pressed.

Thislineis no longer needed because we want the robot to stop once your
program wakes up from its sleep.

Download and run your program.

Observe the robot will drive forward for 2 seconds and stop.

In asimilar fashion, you can program the robot to rotate 90 degrees by reversing the
power to one of the motors and adjusting the time such that it stops rotating after
approximately 90 degrees. Y ou could then combine the go forward and the rotate 90
degrees steps to program the robot to complete one side of a square, turning at the end.
Then by cutting and pasting, you could duplicate the code four times, programming the
robot to complete a square. However, there’s a better way to do this.

Maneuvering the IntelliBrain-Bot 39

Creating Methods
Methods provide away to take a set of program steps and combine them into alarger

step, so you can reuse subsets of your program without copying and pasting. To see how
thisworks, let’s create “goForward” and “rotate90” methods:

1.

Convert the variables leftMotor and rightMotor into member variables so they can
be used by methods other than main. Asthey are now, they are local variables,
which can only be used in the method they are defined in. Do this by adding two
lines declaring these variables between the declaration of the class and the main
method.

public class Maneuver {
private static Mtor |eftMtor;
private static Mtor rightMtor;

public static void main(String args[]) {

Delete the word “Motor” from in front of the lines that initialize these variables
with ContinuousRotationServo objects.

left Motor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(l), false, 14);
right Motor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(2), true, 14);

Thiswas used to declare these variables local to the main method, which means
they could only be used in the main method. Now they are member variables
which can be used in any method in the Maneuver class.

Click the build button (wrench icon) to check that you’ve done this correctly and
your program still compiles and links.

Split the main method into two methods by inserting a closing brace after the
statement which initializes the right motor and declaring the goForward method
such that it contains the remainder of the statements.

right Motor =
new Conti nuousRot ati onServo(IntelliBrain.getServo(2), true, 14);

}

public static void goForward() {
| ef t Mot or . set Power (Mot or . MAX_FORWARD) ;

Add a step to make goForward the final step of the main method.

ri ght Motor =
new Conti nuousRot ati onServo(lntelliBrain.getServo(2), true, 14);

goForward();

40 Combining Simple Maneuvers

6. Download your program to the robot and run it.

Observe the robot will behave just asit did before you added the goForward
method.

7. Using the mouse, select the entire goForward method from its declaration through
the closing brace, but do not select the final closing brace which signifies the end
of the class.

8. Enter Ctrl-C or use Edit->Copy to copy the method.

9. Move the cursor down to the last line of the class, just to the left of the closing
brace and enter Ctrl-V or use Edit->Paste to paste a second copy of the goForward
method.

10. Change the name of the copy of the “goForward” method to “rotate90.”

public static void rotate90() {

11. Change the power settings to 8 and -8 for the left and right motors, respectively.

| ef t Mot or. set Power (8);
ri ght Mot or. set Power (-8);

Using a power level less than the maximum will cause the robot to rotate more
slowly, making it easier to tune the angle of rotation.

12. Change the slegp time in the rotate90 method to 600.

13. Create a stop method following the rotate90 method, which will stop the motors.

public static void stop() {
| ef t Motor. stop();
ri ght Mot or. stop();

14. Add two steps to make rotate90 and stop the final steps of the main method, right
after goForward.

goForward();
rotate90();

stop();
15. Download and run your program.

The robot will drive forward, rotate approximately 90 degrees and stop. If it

Maneuvering the IntelliBrain-Bot 41

rotates too much, reduce the sleep time, then download and run your program
again. If it rotatestoo little, increase the slegp time, then download and run your
program again. Once you have it rotating about 90 degrees proceed to the next

step.

16. Copy the goForward and rotate90 steps at the end of the main method and
duplicate them three more times.

goForward();
rotate90();
goForward() ;
rotate90();
goForward();
rotate90();
goForward();
rotate90();

stop();

17. Download and run your program.

The robot will drive approximately in asquare. Adjust the sleep timein the
rotate90 method to fine tune the robot to drive in as close to a perfect square as
possible.

By creating methods to go forward, rotate 90 degrees and stop, you avoided creating alot
of duplicate code. This makesyour program smaller and easier to maintain. If you were
to make dlight adjustments to any of these methods, you would only need to make
changes in one copy of the procedure, rather than in four. Thisisabig improvement, but
there’s still more room to improve your program by adding aloop to eliminate more
duplication.

Looping

Most programming languages include a looping construct. This allows your program to
repeat a set of steps a number of times without requiring the steps to be duplicated, as we
did previously. Java provides three types of loops, while loops, do-while loops and for
loops.

Suppose you would like to program the robot to drive in a square until you tell it to stop.
Without the concept of looping — repeating the same set of steps over and over — you
would be forced to cut and paste the same set of steps, repeating enough times such that
your program would not terminate before you lost patience watching the robot drivein a
square. With looping, thisis easy to accomplish with very little Java code.

Do the following to program your robot to drive in a square indefinitely:

1. Deletethree of the four repetitions of the goForward and rotateQ0 steps.

42 Combining Simple Maneuvers

2. Delete the stop step.

3. Add awhileloop around the remaining goForward and rotate90 steps.

while (true) {
goForward();
rotate90();

4. Download and run your program.
The robot will now drive in asquare until you stop it or its batteries drain.

Y ou will most likely notice the corners of the square drift as the robot continues
to drive around the square. This occurs because the robot does not rotate exactly
90 degrees on each turn. If it overshoots or undershoots by even a small amount
on each turn, the error will accumulate and become very noticeable. Y ou can
reduce this by fine tuning the sleep time in the rotate90 method, but you will not
be able to eliminateit.

Coping with imperfections and uncertainty in the real world is one of the greatest
challenges of robotics. Fortunately, robotics researchers are making great
progress devel oping techniques for robots to cope with uncertainty.

Conditionals and Variables

Y ou have now programmed two extremes, maneuvering once around a square and
driving indefinitely around the square. What if you want the robot to drive just the four
legs of the square and then stop?

In the previous exercise the while statement included the word “true” in parenthesis.

This clause tells the computer under what condition it should continue executing the loop.
The computer will check the condition prior to each execution of the step of the loop. If
the condition is true, the computer will continue iterating the loop. If itisfalse, it will
stop iterating the loop and start executing the instructions following the loop. Inthe
previous exercise the condition was always true.

We can program the loop to use an integer variable to count the number of iterations and
continue iterating until the count reaches a certain value. Y ou can think of avariable like
you do the memory function on acalculator. A variable remembers the last value
assigned to it, just like avalue you store in the memory register on your calculator. Y our
program can recall the last stored value at alater time, just like you can recall the last
value you stored in your calculator’s memory whenever you need to.

Compl ete the following steps to add an integer variable to count the loop iterations and
limit the loop to four iterations:

Maneuvering the IntelliBrain-Bot 43

1. Declaretheinteger variable “i” and initialize it to zero on the line prior to the
while statement.

int i = 0;

The int keyword tells the Java compiler to create an integer variable. Integer
variables hold whole numbers with positive, zero or negative values.

2. Add astatement at the end of the loop to increment the variablei at the end of
each iteration.

i ++;

Note: The ++ operator increments the associated variable. A similar operator, --,
decrements the associated variable.

3. Modify the condition clause of the loop such that it will only continue if the count
islessthan four.

while (i < 4) {

4. Add astatement to call the stop method after the loop.

int i =0;

while (i < 4) {
goForward();
rotate90();
i ++;

}
stop();

5. Download and run your program.
The robot will now drive once around the square.

do-while and for Loops

The Java language provides do-while loops and for loops. The do-while loop checks the
condition at the end of loop rather than the beginning, which is useful if statementsin the
loop always need to execute at least one time. The while [oop above can be expressed as
the following do-while loop:

int i =0;

do {
goForward();
rotate90();
i ++;

} while (i < 4);

44 Combining Simple Maneuvers

stop();

A for loop combines the initialization, conditional clause and post-iteration operation into
asingle statement as follows:

for (int i =0; i <4; i++) {
goForwar d() ;
rotate90();

}
stop();

Relational Operators

In the examples thus far we have used only the less than (<) relational operator. The Java
language provides other relational operators. These arelisted in Table 3-1.

Table 3-1 - Relational Operators

Operator Description Example
< less than I < 4
<= less than or equal to I <= 4
> greater than i >4
>= greater than or equal to i >= 4
== equa| to i == 4
= not equal to I 1=4
Summary

The key to maneuvering a differential-drive robot isindividually controlling the direction
and speed of the two wheels. By programming the robot to turn both wheels in the same
direction, it will go forward. By programming the robot to turn its wheels in opposite
directions, it will rotate in place. Y ou can program the robot to perform other maneuvers,
such asdriving in an arc, by applying different amounts of power to each motor.

Y ou can program the robot to perform more sophisticated maneuvers by performing
timed sequences of basic maneuvers. By programming your robot to perform four
repetitions of moving straight and turning 90 degrees it will drive in a square pattern.

Asyou experiment with the robot, you will observe that using time as the basis for
navigation hasits limitations. As the batteries drain, the behavior of the robot will
change. Also, the robot’s performance will vary depending on the surface it operates on.
The difference in friction of different surfaces will have a significant effect on how the
robot performs.

Unfortunately, as your program is currently implemented, it provides no mechanism for
the robot to account for variations in conditions such as battery charge and friction. The
robot’s control system is “open loop” because it lacks “feedback™ to account for
variations in conditions that affect its performance.

Maneuvering the IntelliBrain-Bot 45

Y ou can improve maneuvering consistency and accuracy by adding sensorsto provide
feedback to your program. One way you can do thisis by adding wheel encoders to
sense the positions of the wheels.

This chapter also demonstrated how to use the class library API documentation and the
IntelliBrain 2 User Guide to learn how to program the robot. By using the
documentation you can learn how to use features you have not previously used.

Finally, you learned about a few more features of the Java language, methods, variables
and loops. Methods allow you to combine a sequence of program stepsinto asingle
high-level step. Instead of copying and pasting the steps to go forward and rotate 90
degrees, you created methods to execute the detailed stepsto do the higher level
operations of going forward, rotating and stopping. By using aloop, you were able to
construct your program to repeat a sequence of steps a number of times without
duplicating statements. Loopsincluded conditiona statements which control when the
computer should continue iterating the loop. When the condition is false the loop will
terminate and the remainder of your program will execute.

Exercises

1. Browseto the APl documentation for the IntelliBrain class and review it. List
three methods of this class and describe what they do.

2. Locate the discussion of using servo portsin the IntelliBrain 2 User Guide. How
many servo ports does the IntelliBrain 2 robotics controller provide? Where on
the circuit board are they located? Which servo ports do the left and right motors
on the IntelliBrain-Bot connect to?

3. Browse to the documentation on the Motor interface in the class library API
documentation. What methods does this interface offer? What is the range of the
power parameter used by the setPower method?

4. Identify each class and method your Maneuver program references. Browse to
the API documentation for each of these classes and methods and write a short
description of each based on the information from the documentation.

5. Describe how adifferential drive robot can accomplish the following maneuvers:
drive forward, rotate counter-clockwise in place and drive in an arc to the right.

6. Program the robot to drive straight ahead for exactly 12 inches. Using the same
program, run the robot on different surfaces such astile or carpet. Record how far
it goes on each surface. Why doesit not go the same distance on all surfaces?

7. Program the robot to rotate exactly 180 degrees. Using the same program, run the
robot on different surfaces. Record how far it rotates on each surface. Why does
it not rotate the same amount on all surfaces?

8. Program the robot to navigate in atriangle or some other shape you choose.
Modify your program to use while, do-while and for loops to accomplish the same
maneuver.

46 Exercises

9. Program the robot to arc to the left or right as it moves forward by applying a
different amount of power to each wheel. What happens when you increase or
decrease the difference in power?

10. Program the robot to navigate a particular shape. Change the batteries to a set of
batteries that has more or less charge remaining. How does this affect the
navigation?

Maneuvering the IntelliBrain-Bot 47

CHAPTER 4

Interacting with the IntelliBrain-Bot

“Danger, Will Robinson!”

Whether it’s the nameless robot from the 1960s television show, Lost in Space, who
shouted warnings and flailed his arms when his human companion, Will Robinson, was
in danger, or one of the many other science fiction robots we have fantasized about, we
often imagine robots as machines that interact freely with humans.

In this chapter you will learn how to program the features of the IntelliBrain™-Bot
educational robot that enable it to interact with people.

Using Text Output

On way for the IntelliBrain-Bot educational robot to interact with humansis by
displaying textual messages on its Liquid Crystal Display (LCD) screen. The LCD
screen provides space to display two sixteen character lines of text.

Before jumping into writing a program to use the display, first review the documentation
for the classes you will need to be familiar with to output text to the LCD screen.

1. Start RoboJDE™, click the API documentation button.

2. Navigate to the documentation for the IntelliBrain class.

3. Navigate to and review documentation for the getL cdDisplay method.
4. Click on the link to documentation for the Display class.

5. Review the documentation for the Display class, taking note of the methods
which are available to display text.

Now, let’s use what you have learned from the documentation by creating a simple
program to display the name of your program on the first line of the LCD screen. You
will begin by creating a new project for your program. Y ou will build on this program
as you work your way through this chapter.

49

1. Using the File->New Project menu item, create a new project named “Interact.”

2. Add import statements at the beginning of your program for the two library
classes your program will use, IntelliBrain and the Display.

i mport comridgesoft.intellibrain.IntelliBrain;
i mport comridgesoft.io. D splay;

3. Declareavariableto refer to the display object for the LCD display.

private static Display display;

4. Insert alineinto the main method to retrieve the Display object from the
IntelliBrain class and save areferenceto it in a variable named display.

di splay = IntelliBrain.getlLcdD splay();

5. Add alineto display the name of your program on the first line of the LCD
screen.

di splay.print(0, "Interact");

The LCD screen hastwo lines. Thefirst lineis numbered 0. The second lineis
numbered 1. (It isvery common in computer programs to start with zero when
numbering elementsin alist. This stemsfrom the fact that computer hardware
accesses elementsin alist by their offset from the beginning of thelist. Thefirst
element is offset by 0, the second element is offset by 1, and so on.)

The entire program should appear as follows:

i mport comridgesoft.intellibrain.lIntelliBrain;
i mport comridgesoft.io. D splay;

public class Interact {
private static Display display;

public static void main(String args[]) {

display = IntelliBrain.getLcdD splay();
di splay.print(0, "Interact");

6. Build, load and test your program.

Y our program name will quickly display its name on the first line of the LCD
screen and then exit.

50 Using Text Output

Using LEDs

One very simple way for robots to communicate with humansis by using Light Emitting
Diodes (LEDs). You are undoubtedly familiar with these, as they are used on almost
every computer system and electronic gadget you will ever encounter.

One of the most common ways to use an LED is to indicate when power ison. When the
power ison, the LED isilluminated. When the power is off, the LED is not illuminated.
The IntelliBrain 2 robotics controller has apower LED. It isthe green LED to the right
of the power switch. Switch the power on and off and observe this LED goes on and off.

The power LED is hardwired into the circuit of the IntelliBrain controller. Y our
programs cannot control thisLED. However, the six other LEDs to the right of it can be
controlled by your programs.

Thefirst two LEDs to the right of the power LED are the status LED and the fault LED,
respectively. These LEDs are only partially controllable by your programs. They are
wired to the START and STOP buttons. The status LED, which is green, will always
illuminate when you pressthe START button. The fault LED, which isred, will always
illuminate when you press the STOP button. Y our program can control the state of these
LEDs when the buttons are not pressed. However, if the RoboJDE virtual machine
encounters an unexpected problem, it will illuminate the fault LED.

The next four LEDs are user LEDs, which are fully under the control of your programs.
We will extend your program to use these LEDs so you will become familiar with how
LEDs can be used to enable the robot to interact with humans.

In the previous chapter you wrote a program that enabled the robot to perform various
maneuvers. Although you could see the robot performing particular maneuvers, there
was no indication of how your program was commanding the individual motors. We will
extend your program to use the LEDs to provide more visibility into the commands your
program gives the motors as it maneuvers the robot. Before we discuss programming the
LEDs, let’sfirst extend your program by adding the ability to maneuver in asquare
pattern. Once you have this working, we will discuss programming the LEDs.

1. Addimport statements to your program for Motor and ContinuousRotationServo.

i mport comridgesoft.robotics. Mtor;
i mport comridgesoft.robotics. Conti nuousRot ati onSer vo;

2. Definetwo variablesto reference the left and right motor objects.

private static Mtor |eftMtor;
private static Mtor rightMtor;

3. Instantiate the motor objects in the main method.

Interacting with the IntelliBrain-Bot 51

left Motor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(1l), false, 14);
right Motor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(2), true, 14);

4. Create amethod that allows the caller to specify the power to apply to each motor
and the length of time to hold that power.

public static void go(int |eftPower, int rightPower, int mlliseconds) {
| ef t Mot or. set Power (| ef t Power) ;
ri ght Mot or. set Power (ri ght Power) ;

try {
Thread. sl eep(m | |i seconds);

}
catch (InterruptedException e) {}

This method defines three variables — also referred to as the methods arguments —
which must be passed to the method when it is called. They are |eftPower,
rightPower and milliseconds.

5. Create astop method to turn off both motors.

public static void stop() {
| eft Motor. stop();
ri ght Mot or. stop();

6. Create amethod that uses the go and stop methods to maneuver in a square
pattern of a specified size.
public static void maneuver Square(int size) {
for (int i =0; i <4; i++) {
go(16, 16, size);
go(8, -8, 600);

}
stop();

For convenience, the sizeisin units of milliseconds, rather than units of distance.

7. Add astatement to call the maneuverSquare method at the end of the main
method.

maneuver Squar e(3000) ;

8. Build, load and test your program.

The robot will maneuver in a square pattern.

52 Using LEDs

Now that you have the base program working, let’s extend it to make use of several
LEDs. We’ll use four LEDs to indicate how the motors are being powered while the
robot maneuvers. We’ll use the four user LEDs on the IntelliBrain 2 robotics controller.
These are the four right most LEDs, above the STOP button. The odd numbered LEDs
are green. The even numbered LEDs arered. We’ll use the left two LEDsto indicate the
status of the left motor and the right two LEDs to indicate the statues of the right motor.
We will indicate the direction of the motor by illuminating the green LED when your
program applies forward power and illuminating the red LED when your program applies
reverse power. We will turn the LEDs off when no power is applied to the motor.

1. Review the APl documentation for the getUserLed method of the IntelliBrain
class. Also review the APl documentation for the LED interface.

2. Add an import statement for the LED interface.

i mport com ridgesoft.io. LED

3. Declare variablesto refer to the LED objects.

private static LED | eftFwWILED;
private static LED | eftRevLED;
private static LED ri ght FwdLED;
private static LED right RevLED,

4. Add statements to the main method to obtain the LED objects from the
IntelliBrain class.

| eft FWdLED = IntelliBrain.getUserLed(1);
| eft RevLED = IntelliBrain.getUserLed(2);
right FwdLED = IntelliBrain.getUserlLed(3);
right RevLED = IntelliBrain.getUserlLed(4);

We must now extend your program to turn the LEDs on and off appropriately whenever
it adjusts the power applied to either motor. Whenever your program sets the motor
power to avalue greater than O, it will illuminate the green LED and turn off the red
LED. Whenever your program sets the motor power to a value less than 0, it will
illuminate the red LED and turn off the green LED. Whenever your program sets the
motor power to 0 or stops the motor, it will turn off both LEDs. We will use if
statements to enable your program to accomplish this.

if Statements

The Java language enables your program to conditionally execute statements using an if
statement. This statement has the form:

i f (condition) {
conditionally executed statements

Interacting with the IntelliBrain-Bot 53

The statements within the parenthesis are a block of code that is only executed if the
condition istrue. Using the following statements, your program will turn the green LED
on and the red LED off when the power to the left motor is greater than O:

if (leftPower > 0) {
| ef t FWdLED. on() ;
| eft RevLED. of f () ;

Thistakes care of the case when forward power is applied to the motor. It doesn’t handle
the reverse and stop cases. The “else” clause allows us to handle these cases.

The Javalanguage provides for chaining conditional clauses together using the else
keyword, asfollows:

i f (conditionl) ({
conditionally executed statements

}
el se i f (condition2) ({
conditionally executed statements

}

el se {
conditionally executed statements

}

When a program runs, the if conditions will be checked in order. The block of code
within the first clause whose condition evaluates to true will be executed. The other code
blocks will be skipped. If none of the conditions are true, the else code block, at the end,
will be executed. Y ou can chain together as many else if clauses asyou need. You can
also leave out the final else clauseif it isn’t necessary.

By using else clauses, we can handle all of the statements needed to control the | eft
motor’s LEDs, as follows:

if (leftPower > 0) {
| ef t FWdLED. on();
| eft RevLED. of f () ;

else if (leftPower < 0) {
| ef t FWdLED. of f () ;
| ef t RevLED. on();
}
el se {
| ef t FWwdLED. of f () ;
| ef t RevLED. of f () ;

}
The right motor’s LEDs can be handled similarly.

54 Using LEDs

Let’sadd if statements to your program to control the LEDSs.

5. Add the code above to the go method, right after the statements that set the motor
power.

6. Copy the statements you entered in the previous step and paste them right below
thefirst copy. Change all instances of “left” in the pasted copy to “right.”

7. Add statements to the stop method to turn the LEDs off.

| ef t FWdLED. of f ()
| ef t RevLED. of f ()
ri ght FWdLED. of f () ;
ri ght RevLED. of f () ;

8. Build, load and test your program.

Observe the LEDs as the robot drives. As the robot goes straight ahead the two
green LEDs are illuminated and the two red LEDs are off. When the robot turns,
you observe the right motor’s green LED turns off and the red LED illuminates,
because your program has reversed power to the right motor.

Using the Thumbwheel

The IntelliBrain 2 robotics controller’s thumbwheel works similar to the volume control
knob on acar radio. In this section, we will extend your program to use the thumbwheel
to control the size of the square pattern the robot maneuvers. We will also use the
thumbwheel to control other functions we add to your program later in this chapter.

The thumbwheel functions as a variable analog input. When your program samples
(reads) the thumbwheel input it will obtain an integer value between 0 and 1023. The
reading will vary depending on the position of the wheel. When the wheel is turned all
the way counterclockwise, the reading will be 0. When the wheel isturned all the way
clockwise, the reading will be 1023. When the wheel isin an intermediate position, the
reading will be a value between 0 and 1023.

Complete the follow steps to extend your program such that you can use the thumbwheel
to vary the size of the square the robot maneuvers.

1. Review the APl documentation for the getThumbWheel method of the
IntelliBrain class and the APl documentation for the Analoglnput interface.

2. Add an import statement for the Analoglnput interface.

i mport comridgesoft.robotics. Anal ogl nput;

Interacting with the IntelliBrain-Bot 55

3. Defineavariableto refer to the thumbwheel object.

private static Anal ogl nput thunbwheel ;

4. Add a statement to the main method to obtain a reference to the thumbwheel input
object from the IntelliBrain class.

t hunbwheel = IntelliBrain.get ThunbWeel ();

5. Add a statement to the main method to sample and display the thumbwheel
reading on the second line of the LCD screen. Add this statement just prior to the
point where you call the maneuverSquare method.

di splay. print (1, "Thunbwheel: " + thunbwheel.sanple());

6. Modify the input parameter of the maneuverSguare method to use the
thumbwheel to control the size of the square.

maneuver Squar e(t hunbwheel . sanpl e() * 5);

Recall that the range of the thumbwheel is 0 to 1023. This statement multiplies
the thumbwhesl reading by five and passes the result to the maneuverSquare
method. The size of the square is specified as the number of milliseconds your
program powers the robot straight ahead along each side of the sgquare.

7. Build, load and test your program.

Run your program several times, setting the thumbwhesl to a different position
prior to each run. Observe that the thumbwheel reading is displayed on the
second line of the LCD screen. The size of the square the robot maneuvers
depends on the position of the thumbwheel.

Arithmetic Operations

In the previous section, we used the multiplication operator (*) to scale the thumbwheel
reading to avalue suitable for passing to the maneuverSquare method. Thisis one of
many arithmetic operations the Java language supports. Table 4-1 listsal of the
arithmetic operations that are available to Java programs.

Assignment Operator

The assignment operator (=) assigns the variable on the left hand side of the operator, the
value of the expression on the right hand side of the operator. For example, the
statement:

a = 2;

56 Arithmetic Operations

sets the value of the left hand side variable, a, to 2. The expression on the right hand side
may be more complex, such as:

a=>b + c;

In this case, awill be assigned the sum of the values of the variablesb and c. For
example, if values of variablesb and c are 9 and 7, the value 16 will be assigned to the
variable a

Table4-1 - Arithmetic Operators

Operator | Description Example

= assignment b = 3;

+ add (integer) a=>b+ 3;
concatenate (String) s = “Walue: ” + i;
subtract a=>b-3;

* multiply a=>b*5;

/ divide a=>b/ 5

% remainder a=>b %5;

++ pre-increment (increment before use) a = ++b + 2;
post-increment (increment after use) a = b++ + 2;

-- pre-decrement (decrement prior to use) a=--b+ 2;
post-decrement (decrement after use) a=b-- + 2

+= add and assign a += 2;

-= subtract and assign a-= 2,

*= multiply and assign a *=5;

= divide and assign al= 2

%= remainder and assign a % b5;

Arithmetic Operators

The Java language supports the four common arithmetic operations you are familiar with
from using acalculator: add (+), subtract (-), multiply (*) and divide (/). These operators
function as you would expect when solving algebraic equations on your calculator. As
with most programming languages, multiply and divide are denoted using the symbols *
and / instead of the standard math symbols. The standard symbols for multiplication and
division don’t exist on acomputer keyboard, therefore, * and / are used in their place.
The following code snippet provides examples of the arithmetic operations. The
comments to the right list the values of each variable will have after that statement is
executed. Two backslashes (//) denote the remainder of the line is a comment intended
for the reader. The Java compiler ignores the slashes and the remainder of the line, which
allows you to place comments (notes) in your programs.

I/ a b c
[
/1 1

/1 1 2
/1 1 2
/1 4 2

i nt
i nt
i nt
a =

DO T

+ 1o

ww o

Interacting with the IntelliBrain-Bot 57

a=a - 2 [/ 2 2 3
a=a - c; /1 -1 2 3
a=c* 10; [/ 30 2 3
a=a+ b; 1/ 32 2 3
b =a/l b /1 32 16 3
b =a %c; /1 32 2 3

In addition to summing two numeric values, the + operator can also be used to
concatenate strings. For example:

int a = 32;
Systemout.println(“The value of ais: ” + a);

will print the following output:

The value of a is: 32

Whenever the operand to the left of the + operator is a string, the operand to the right of
the + sign is converted to its string equivalent. The two strings are then concatenated to
form asingle string. In the case above, the value of the variable ais converted from an
integer to a string (“32”) and appended to the string “The value of ais: ”

Precedence

As with standard algebraic notation, arithmetic operations have precedence in the Java.
For example, given the expression:

a=3+Db*c

b and c will be multiplied prior to adding 3. Multiplication takes precedence over
addition. Therefore, the Java compiler ensures the multiplication operation will be done
first. The precedence of arithmetic operationsin Javaisgivenin Table 4-2. Operations
higher in the table have higher precedence. The Java compiler will ensure operations
higher in the table are computed prior to operations lower in the table. Operationsin the
same row in the table have the same precedence. Equal precedence operations are
evaluated in the | eft to right order they appear in your program.

Table 4-2 - Arithmetic Operator Precedence (greatest to least)

Operators Description

++, -- pre-increment/decrement

++, -- post-increment/decrement

* 1, % multiplication, division, remainder
+, - addition, subtraction

= *= [= =+ -= assignment

Similar to most calculators, you can supply parentheses to specify the order of operations,
overriding the default precedence. For example,

58 Arithmetic Operations

a=(3+b *c

will result in the sum of 3 and b being multiplied by c. If bis2and cis 3, the value 15
will be assigned to a.

Frequently, you will find you programs are easier to understand if you include
parentheses even when they are not needed. Parentheses make it easy to understand the
order of operations without having to recall the precedence rules.

Using Push Buttons

The thumbwheel enhancement we added in the previous section has a significant
shortcoming. It doesn’t provide away for you to dial in the setting prior to the start of
the maneuver. We can address this by enhancing your program to delay the beginning of
the maneuver until a second press of the START button. During this period your
program can loop displaying the thumbwheel reading. Thiswill give you a chance to dial
in the exact setting you desire.

Complete the following steps to add this feature:

1. Review the APl documentation for the getStartButton method of the IntelliBrain
class and the API documentation for the PushButton interface.

2. Add animport statement for the PushButton interface.

i mport com ridgesoft.robotics. PushButton;

3. Declare avariableto refer to the START button object.

private static PushButton startButton;

4. Add a statement to the main method to obtain the START button object from the
IntelliBrain class.

startButton = IntelliBrain.getStartButton();

5. Add awhileloop around the thumbwheel print statement. The loop must
continue iterating until the second press of the START button.

startButton. wai t Rel eased();
while (!startButton.isPressed()) {

di splay. print(1, "Thunbwheel: " + thunbwheel.sanple());
}

Preceding the loop with a statement to wait for the button to be released ensures
your program will waits for the button to be released after the initial press. By
including this line, your program will wait until the second START button press

Interacting with the IntelliBrain-Bot 59

before starting the maneuver.

The exclamation point (1) in the while statement isthe logical NOT operator. It
causes the true or false value returned by the call to the isPressed method to be
inverted. If you mentally insert the word, not, whenever you see this operator,
you will understand what it does. In this case, read the while loop as follows,
“While the start button is not pressed, print the reading of the thumbwheel.”

6. Build, load and test your program.

Y our program will now allow you to adjust the thumbwheel setting. Once you
have dialed in the setting you want, press the START button. The robot will
maneuver a square size you specified. Run your program several times using a
different thumbwheel setting each time.

Logical Operators and Boolean Variables

In addition to integers, Java supports Boolean variables, which have only two possible
values, true or false. TheisPressed method defined by the PushButton interface returns a
Boolean value. The value will be trueif the button is pressed and false if it is not
pressed. The “boolean” keyword allows you to declare Boolean variables in your
programs. For example,

bool ean pressed = fal se;

Table 4-3 - Logical Operators

Operator | Description Example

! NOT I'b;

&& AND a=>b & c;
| | OR a=>b || c;

Table 4-3 lists the logical operators that operate on Boolean values. The following code
snippet illustrates the use of these Boolean operators.

/Il a b c

I I
bool ean a = true; /Il true
bool ean b = fal se; [/ true false -
bool ean ¢ = true; /Il true false true
a = lc; // false false true
a=>b && c; // false false true
a=>b]|]| c; /1 true false true
b =a & c; [/ true true true
a=1!Db && !c; // false true true

The relational operators listed in Table 3-1 operate on numeric values, but generate a
Boolean result. For example,

bool ean novi ng = power != 0;

60 Logical Operators and Boolean Variables

bool ean goi ngForward = power > O;
bool ean goi ngBackward = power < 0O;

Teaching the Robot New Tricks

Aswith a pet, your robot will be more fun if it can do more than just onetrick. In
addition to itsfirst trick, driving in a square, let’s teach the robot a second trick, dancing.

Rather than programming the robot to perform a highly choreographed dance, we’ll keep
it smple. We’ll teach the robot to “dance” by moving around randomly on the floor. We
can do this by adding a new method to your program that uses the Random class to
generate random numbers. Y our program will use to randomly vary the power it applies
to the motors.

Extend your program as follows:
1. Review the APl documentation for the Random class.

The Random class has a method, nextint, which returns a random number from
the full range of the int data type (-4,294,967,295 to 4,294,967,296).
Alternatively, if you call nextint with an integer argument it will return arandom
value between 0 and the value of the argument. Neither of these options provides
exactly what we need, which is arandom value between -16 and 16, the range of
motor power settings. By using the remainder operator (%), your program can
convert arandom integer to the correct range. This operator computes the
remainder of adivision operation. Y our program can obtain a random number
between -16 and 16 by using the remainder operator to compute the remainder of
adivision by 17.

int leftPower = randomnextlnt() % 17,
int rightPower = random nextint() % 17;

Y ou can further randomize the dance by programming the robot to do each step of
the dance for arandom period of time. The following statement chooses a
random number of milliseconds between 100 and 499.

int time = random nextlnt(400) + 100;

2. Add the following method to your program.

public static void dance(int seed) {
Random random = new Randon(seed);

while (true) {
int |eftPower = random nextint() % 17;
int rightPower = random nextint() % 17;
int time = random next|nt(400) + 100;
go(l eft Power, rightPower, tine);

Interacting with the IntelliBrain-Bot 61

This method loops forever performing dance steps by randomly varying the
power applied to each motor and the time spent doing each step. It requiresa
seed which randomizes the random number generator. Otherwise, the dance
would consist of the same set of pseudo random steps each time.

3. Add an import statement for the Random class.

i mport java.util.Random

4. Replace the call to maneuverSquare method with acall to dance.

dance(t hunbwheel . sanpl e());

5. Build, load and test your program.

Observe the robot will move around randomly, but will not wander far from the
spot where it started.

Now that we’ve taught the robot a second trick, let’s further extend your program to
allow you to select the trick you would like the robot to perform.

We can do this by using the STOP button to cycle through the list of tricks and the
START button to perform the trick you select.

1. Declareavariableto refer to the STOP button object.

private static PushButton stopButton;

2. Initialize the stopButton variable by adding a call to the getStopButton method.
Use the setTerminateOnStop method to configure the STOP button so it does not
terminate your program.

stopButton = IntelliBrain.getStopButton();
IntelliBrain.setTermn nateOnSt op(fal se);

3. Declare avariable to keep track of which trick is currently proposed. Initializeit
to 1. Place this statement just prior to the startButton loop in the main method.

int trick = 1;

4. Add statements in the startButton loop to cycle to the next trick each time the
STOP button is pressed.

62 Teaching the Robot New Tricks

if (stopButton.isPressed()) {
st opBut t on. wai t Rel eased();

trick++;
if (trick > 2)
trick = 1;

There are only two tricks. If the value of trick is 2 when the STOP button is
pressed, the if statement causes it to cycle back to trick number 1.

Insert statements in the startButton loop to display the proposed trick.

if (trick == 1) {
di splay. print (0, "Maneuver Square");

el se {
di splay. print (0, "Dance");
}

. Reconfigure the STOP button such that it will terminate your program once the
trick has been selected. Insert the following statement after the end of the loop.

IntelliBrain.setTerm nateOnStop(true);

Thiswill allow you to stop the robot when it is performing atrick. Without doing
this, you would have to switch the power off.

. Replace the call to the dance method with statements that will call the method for
the selected trick.

if (trick == 1) {
maneuver Squar e(t hunbwheel . sanpl e() * 5);

}
el se {

dance(t hunbwheel . sanpl e());
}

. Build, load and test your program.

Y ou will now be able to use the STOP button to select whether the robot should
maneuver in sguare pattern or dance randomly.

Switch Statements

Up to this point we have used if statements to control which trick to execute. Aswe add
more tricks, we will need to add another else-if clause for each new trick. Thisworks
adequately, but the Java language provides another type of statement, the switch
statement, which isintended to handle this type of situation. Using a switch statement
instead of an if statement results in amore efficient program. Theif statement:

Interacting with the IntelliBrain-Bot 63

if (trick == 1) {
// trick one statenents

}
el se {

/] trick two statenents
}

can be replaced by the equivalent, but more efficient, switch statement:

switch (trick) {

case 1.
// trick one statenents
br eak;

case 2:
// trick two statenents
br eak;

}

Switch statements are more efficient than equivalent if statements. With the switch
statements the computer doesn’t need to check multiple conditions each time the
statement is executed. Instead, the Java compiler builds a table that enables the computer
to look up the appropriate case based on the value of the switch variable. In our case the
integer variable trick isthe switch variable. When there are alot of cases, looking up the
correct case is much more efficient than checking each case to find the code block to
execute.

Modify your program to use switch statements instead of if statements, as follows:

1. Replacetheif statement in the startButton loop with an equivalent switch
statement.

switch (trick) {

case 1:
di splay. print (0, "Maneuver Square");
br eak;
case 2.
di splay. print (0, "Dance");
br eak;
}

2. Replacetheif statement after the startButton loop with an equivalent switch
statement.

switch (trick) {
case 1:
maneuver Squar e(t hunbwheel . sanpl e() * 5);
br eak;
case 2:
dance(t hunbwheel . sanpl e());
br eak;

64 Switch Statements

3. Build, load and test your program.
Y our program will work the same asiit did previously.

One other feature of the switch statement is the case named “default.” If adefault caseis
present, that case will be used when the value of the variable in the switch statement
doesn’t match any of the caseslisted. You can eliminate the statement:

if (trick > 2)
trick = 1;

by adding a default case to the first switch statement. Do this asfollows:
1. Deletetheif statement in the startButton loop.

2. Add adefault case prior to case 1, but leave out the break statement at the end of
the case.

switch (trick) {
def aul t :
trick = 1;
case 1:
// case one statements

Whenever the value of trick isnot 1, the computer will select the default case,
which will reset the trick value to 1.

The break statement causes the computer to break out of the switch statement and
continue executing the statements following the switch statement. By leaving the
break statement out of default case, execution will fall through into case 1. This
is exactly what we want to happen when the trick variable exceeds the number of
tricks. The trick number will cycle back to 1 and display the name of trick 1.

3. Build, load and test your program.
Y our program will function asit did previously.
Using the default case instead of an if statement makes your program dlightly easier to
maintain. Aswe add new tricks, you won’t need to be concerned with modifying the

limit check to cycle the trick number back to one. The default statement will adjust for
this automatically each time you add a new case to the switch statement.

Interacting with the IntelliBrain-Bot 65

Using the Buzzer

The IntelliBrain robotics controller includes a buzzer, which provides audio interaction
with users.

Let’s extend your program to give audio feedback when we push buttons.

1.

Review the API documentation for the getBuzzer method of the IntelliBrain class
and the documentation for the Speaker class.

Add an import statement for the Speaker class.

i mport comridgesoft.io. Speaker;

Declare avariable to refer to the Speaker object for the buzzer.

private static Speaker buzzer;

Add a statement to the main method to obtain the buzzer object from the
IntelliBrain class.

buzzer = IntelliBrain.getBuzzer();

Add callsto the buzzer object’s beep method each time the START or STOP
button is pressed. There are two places where these calls need to be added: 1) as
the first statement within the stopButton.isPressed if statement, and 2)
immediately after the startButton loop.

buzzer. beep();

Build, load and test your program.

Now, the buzzer will beep when you press the START and STOP buttons.

Playing a Tune

For its next trick, we will teach the robot how to play atune, Mary Had a Little Lamb,
using the buzzer.

A musical tune is simply a sequence of notes played one after the other. Each noteisa
sound wave generated at a particular frequency and played for a certain period of time.
Thetune, Mary Had a Little Lamb, consists of whole notes, half notes and quarter notes.
A half note is one half the duration of awhole note and a quarter note is one quarter the
duration of awhole note. The duration of awhole note, determines the tempo, or speed,
at which the tune plays. We will use the thumbwheel to control the tempo.

66 Playing a Tune

1. Define constants at the beginning of the Interact class to define the frequency of

various musica notes.

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

OO0OO0OO0OO0OO0O0O0O0O000O0000000O0000O00O000OO0

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

OO0OO0OO0OO0OO0OO0O0000O0000000000O00O000OO0

fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi
fi

nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt

c4

CA_

D4

D4_

E4
F4

F4_

€7

GA_

A4

Ad_

B4
c5

C5_

D5

D5_

ES
F5

F5_

(€3]

Go_

A5

A5

BS

= 262;
SHARP
= 294;
SHARP
= 330;
= 349;
SHARP
= 392;
SHARP
= 440;
SHARP
= 494;
= 523;
SHARP = 554;
= 587;

SHARP = 622;
= 659;

= 698;

SHARP = 740;
= 784;

SHARP = 831;
= 880;

SHARP = 932;
= 988;

277,

311;

370;

415;

466;

The frequencies of notes are available on many sites on the Internet. You find
them using a search engine, such as Google. The notes listed above include the
range of notes your program will useto play Mary Had a Little Lamb.

The “final” keyword is used to define a constant value that cannot be changed

while your program is running.

2. Create amethod to play the tune, Mary Had a Little Lamb.

public static void playTune(int whol eNote) {
= whol eNote / 4;
hal f Note = whol eNote / 2;

int quarterNote

i nt

/1 Mary Had a Little Lanb

quarter Not e) ;
quarterNote);
guarterNote);
guarterNote);

buzzer.
buzzer.
buzzer.
buzzer.

buzzer.
buzzer
buzzer.

buzzer.
buzzer

pl ay(B4,
pl ay(A4,
pl ay(4,
pl ay(A4,

pl ay(B4,
. pl ay(B4,
pl ay(B4,

pl ay(A4,
. pl ay(A4,

quarter Not e);
quarterNote);
hal f Not e) ;

quarter Not e);
quarter Not e);

Interacting with the IntelliBrain-Bot 67

buzzer. pl ay(A4, hal fNote);

buzzer. pl ay(B4, quarterNote);
buzzer. pl ay(D5, quarterNote);
buzzer. pl ay(D5, hal fNote);

buzzer. pl ay(B4, quarterNote);
buzzer. pl ay(A4, quarterNote);
buzzer.play(4, quarterNote);
buzzer. pl ay(A4, quarterNote);

buzzer. pl ay(B4, quarterNote);
buzzer. pl ay(B4, quarterNote);
buzzer. pl ay(B4, quarterNote);
buzzer. pl ay(B4, quarterNote);

buzzer. pl ay(A4, quarterNote);
buzzer. pl ay(A4, quarterNote);
buzzer. pl ay(B4, quarterNote);
buzzer. pl ay(A4, quarterNote);

buzzer. pl ay(&4, whol eNot e);

Y ou can find the sheet music for Mary Had a Little Lamb and many other tunes
by searching on the Internet.

The argument, wholeNote, is the duration in milliseconds of awhole note.

3. Add acaseto thefirst switch statement to display the name of this new trick.

case 3:
di splay. print(0, "Play Tune");
br eak;

4. Add acase to the second switch statement to call the playTune method, using the
thumbwheel to allow the duration of awhole note to be adjusted between 1000
and 2023 milliseconds.

case 3:
pl ayTune(t hunmbwheel . sanpl e() + 1000);
br eak;

5. Build, load and test your program.

Play the tune several times, varying the tempo using the thumbwhes!.

Using a Universal Remote Control

Another way for the IntelliBrain-Bot educational robot to interact with humansisviaa
universal remote control. Aswith atelevision, the remote control alows human

68 Using a Universal Remote Control

interaction with the robot from a distance. The remote control does this by transmitting
pulses of infrared light, which the IntelliBrain-Bot can sense using its infrared remote
control receiver.

Understanding How an Infrared Remote Control Works

Universal remote controls use pulses of infrared light modulated at 38 kHz to transmit
signalsto the receiving device. Different vendors have different ways of converting
keypad input into a stream of infrared light pulses. These are referred to as “protocols” in
computer communications terminology. We will focus on the protocol used by Sony
infrared remote controls.

Note: In order to complete the exercisesin this section, you will need a Sony compatible
universal remote control.

Device Code Key Code

AN

Universal Remote Control

Figure4-1 - Sony Infrared Remote Control Data Transmission

If you are familiar with how Morse Code is used to transmit letters of the alphabet over a
telegraph link, then you aready understand the basic concept of how key codes are
transmitted by a Sony universal remote control. Asdepicted in Figure 4-1, each time you
press a key on the remote control it transmits a series of short and long infrared light
pulses. Each key on the remote control is represented by a unique sequence of short and
long pulses of infrared light. Thisis similar to how each letter in the alphabet is
represented by a unique sequence of long and short pulsesin Morse Code. Asindicated
in Figure 4-1, a Sony remote control transmits the key code as eight infrared light pul ses.
It follows the key code with a device code, which consists of three pulses. The device
code indicates which device the transmission is addressing, for example, the TV or VCR

Each infrared light pulse contains asingle bit of data. A bit can have one of two values, 0
or 1. A short pulse represents a bit with value 0 and along pulse represents a bit with

Interacting with the IntelliBrain-Bot 69

value 1. Asindicated in Figure 4-1, the key code consists of eight bits of data and the
device code consists of three bits of data. Figure 4-1 depicts the transmission of the
channel-up key codeto the TV. The channel-up key codeis 10010000 in binary, or 144
decimal. Table 4-4 liststhe 8-hit binary code and the equivalent decimal value for many
of the keystypically found on a Sony television remote control. The television device
code is 000 binary, or O decimal.

Table 4-4 — Sony Remote Control Key Codes

Key Binary Decimal Key Binary Decimal
1 10000000 | 128 TV/Video 10100101 | 165
2 10000001 | 129 Right Arrow 10110011 | 179
3 10000010 | 130 Left Arrow 10110100 | 180
4 10000011 | 131 Display 10111010 | 186
5 10000100 | 132 Recall 10111011 | 187
6 10000101 | 133 Fast Forward 11011000 | 216
7 10000110 | 134 Rewind 11011001 | 217
8 10000111 | 135 Record 11011010 | 218
9 10001000 | 136 PIP 11011011 | 219
0 10001001 | 137 Pause 11011100 | 220
Enter 10001011 | 139 Stop 11011110 | 222
Channel Up 10010000 | 144 Play 11011111 | 223
Channel Down | 10010001 | 145 Menu 11100000 | 224
Volume Up 10010010 | 146 OK 11100101 | 229
VolumeDown | 10010011 | 147 Up Arrow 11110100 | 244
Mute 10010100 | 148 Down Arrow 11110101 | 245

Receiving Input from the Remote Control

We will now extend your program to enable the remote control to be used as an
aternative to the START and STOP buttons when selecting the trick to perform. Let’s
use the channel-down button on the remote control as an aternative to using the STOP
button to select atrick. We will use the channel-up button to scroll backward through the
list of tricks. We’ll use the play button as an alternative to the START button to start the
trick.

1. Review the APl documentation for the getlrReceiver method of the IntelliBrain
class, the documentation for the IrRemote interface and the documentation for the
SonylrRemote class.

2. Add import statements for the IrRemote interface and the SonylrRemote class.

i mport com ridgesoft.robotics.|rRenote;
i mport comridgesoft.robotics. sensors. Sonyl r Renot e;

3. Consult Table 4-4 and define constants in your program for the three buttons your
program will use.

private static final int CHANNEL_UP = 144;
private static final int CHANNEL DOWN = 145;
private static final int PLAY = 223;

70 Using a Universal Remote Control

4. Declare avariableto refer to the infrared remote control object.

private static IrRenote irRenote;

5. Add a statement to the main method to create an object to receive input from a
Sony compatible infrared remote control viathe IntelliBrain 2 robotics
controller’s remote control receiver.

i rRembte = new SonylrRenote(IntelliBrain.getlrReceiver());

The SonylrRemote class configures the remote control receiver such that it can
receive infrared transmissions from a Sony compatible infrared remote control.

6. Declare avariable in the main method to hold the most recently received key code
from the remote control. Initialize it to the value -1, to indicate no new key code
data has been received from the remote control.

i nt keyCode = -1;

7. Modify the condition check of the while loop such that the it will continue
iterating as long as the START button is not pressed and the play button key code
is not received.

while (!startButton.isPressed() && (keyCode != PLAY)) {

We have used the & & operator (logical AND) listed in Table 4-3 to add a second
condition. Both conditions must be true for iteration of the loop to continue.

8. Insert astatement at the beginning of the while loop to read the most recently
received key code from the remote control.

keyCode = irRenpte.read();

9. Modify theif statement such that a press of the STOP button or reception of the
channel-down key code will cause the next trick to be proposed.

if (stopButton.isPressed() || (keyCode == CHANNEL _DOWN)) {

We have used the || operator (logical OR) listed in Table 4-3 to add a second
condition to the if statement. If either of these conditionsis true, the statements
within the block will be executed.

10. Add an else-if clause such that reception of the channel-up key code will cause
the previous trick to be proposed.

Interacting with the IntelliBrain-Bot 71

el se if (keyCode == CHANNEL_UP) {
buzzer. beep();
trick--;

}

11. Add a case to the switch statement to cycle the proposed trick to the last available
trick if the channel-up key code is received when the first available trick is

proposed.
case O:
trick = 3;
case 3:
di splay. print(0, "Play Tune");
br eak;

The value of trick will become zero if the channel-up key code is received while
thefirst availabletrick is proposed. In this case, we want the proposed trick to
cycle back to the last of the available tricks, Play Tune. By adding a caseto the
switch statement to set the trick value to the number of the last available trick, 3,
the list will cycle. Inserting this case just prior to the case for the last available
trick and leaving out the break statement achieves exactly the behavior we want.

12. Add statements are the end of the while loop to handle the fact that the remote
control sends the key code repeatedly whenever akey isheld down. Even abrief
tap of the key will result in the key code being received multiple times.

if (keyCode != -1) {
do {

try {
Thr ead. sl eep(100) ;

catch (InterruptedException e) {}
} while (irRempte.read() !'= -1);

This code first checks that a key code has been received. If one has been
received, it enters aloop whereby it sleeps for 100 milliseconds and then reads
from the receiver again. It continuesin the loop until no more key codes are
received from the remote control.

13. Ensure your universal remote control is programmed for operation with a Sony
television set.

14. Build, load and test your program.
Y ou can now use the channel-up and channel-down buttons on the remote control

to scroll through the list of available tricks. Y ou can also use the play button on
the remote control instead of the START button on the robot to begin atrick.

72 Using a Universal Remote Control

Maneuvering by Remote Control

Asafinal trick, we will program the robot so it can be maneuvered using the remote
control. We will use the channel-up button to drive forward, the channel-down button to
drive backward, the volume-up button to rotate right and the volume-down button to
rotate left. Holding the button down will cause the robot to continue the operation.
Releasing the button will cause the robot to stop.

1. Define constants for the volume-up and volume-down key codes.

private static final int VOLUVE _UP = 146;
private static final int VOLUVE_DOM = 147,

2. Add anew caseto thefirst switch statement to handle the new trick. Also, move
and adjust case 0 to account for the longer list of tricks.

case O:
trick = 4;

case 4.
di splay. print(0, "Renote Control");
br eak;

3. Add acaseto the second switch statement to call the method for the new trick,
remoteControl.

case 4.
renot eControl ();
br eak;

4. Create the remoteControl method.

public static void renmpteControl () {

}

5. Insert awhileloop to read key codes received from the remote control.

while (true) {
int keyCode = irRenote.read();
}

6. Add aswitch statement within the while loop to handle the four maneuvering
keys and to stop the robot whenever no key codes are being received from the
robot.

switch (keyCode) ({

case CHANNEL_UP:
go(Mot or . MAX_FORWARD, Mbt or. MAX FORWARD, 100);
br eak;

case CHANNEL DOWN:

Interacting with the IntelliBrain-Bot 73

go(Mot or . MAX_REVERSE, WMbt or. MAX REVERSE, 100);
br eak;

case VOLUVE_DOWN:
go(Mot or . MAX_REVERSE, Mbt or. MAX_FORWARD, 100);
br eak;

case VOLUME_UP:
go(Mot or . MAX_FORWARD, Mbt or. MAX_REVERSE, 100);
br eak;

defaul t:

stop();
br eak;

}

7. Build, load and test your program.

Y ou will now be able to remotely control the robot using the channel-up, channel-
down, volume-up and volume-down buttons on the remote control.

Summary

One of the most important skills for arobot to possess is the ability to interact with its
human users. In this chapter you programmed the IntelliBrain-Bot education robot to
allow you to select one of four tricks for the robot to perform. You also learned how to
program the robot to receive input viathe push buttons, thumbwheel and universal
remote control receiver, and to provide output using the LCD screen, LEDs and the
buzzer.

In addition to programming the robot to interact with you, you learned how to use if
statements, switch statements, arithmetic operators and Boolean operators.

Lastly, you learned how a universal remote control transmits key code values as unique
sequences of long and short infrared light pulses that indicate which key has been
pressed.

Exercises

1. Write aprogram to count and display the number of times each push button on the
IntelliBrain 2 robotics controller is pressed. Display the number of presses of the
START button on thefirst line of the LCD screen and the number of times the
STOP button is pressed on the second line.

2. Write aprogram to create a heartbeat by blinking the status LED once per second.

3. Write aprogram that uses the four user LEDsto create a VU meter (segmented
volume meter commonly used in stereo equipment) indicating the position of the
thumbwhes!.

Hint: Turn al of the LEDs off when the thumbwheel reading isO. Turn LED 1
on when the thumbwheel reading is between 1 and 255. Turn LED 1 and 2 on
when the thumbwheel reading is between 256 and 511, and so on.

74 Exercises

. Enhance your program to blink the LEDs whileit plays atune.

Hint: Create a method that is a “wrapper” around the buzzer’s play method. In
this method, prior to calling the buzzer’s play method, turn LEDs on and off
based on the frequency of the note to be played. Replace the callsto the play
method in your playTune method with calls to the new method.

. Extend your program to play a second tune of your choosing.
. Enhance your program by changing the thumbwheel value display to be in units
appropriate for the proposed trick. For example, display the size of the square in

inches or centimeters for the maneuver square trick.

. Write aprogram to receive key codes from a universal remote control and display
their value on the LCD screen. Create akey code table, similar Table 4-4.

. Write aprogram that will enable you to enter an integer value using the key pad
on auniversal remote control. Display the value of the number asyou typeit in.

Interacting with the IntelliBrain-Bot 75

CHAPTER 5

Introduction to Sensing

In the first two DARPA Grand Challenges, the United States Defense Advanced
Research Projects Agency, the agency behind initial development of the Internet, issued a
challenge to robot builders to build arobotic vehicle that could navigate an unknown
course through more than 120 miles (200 km) of desert on itsown. “Stanley,” a modified
Volkswagen Touareg developed by Stanford University researchers, won the $1 million
prize by finishing the race in just under 7 hours.

In order to win, Stanley had to find his way through a series of checkpoints he was given
immediately prior to the race. He had to rely on his own ability to identify and follow
dirt roads without crashing or getting stuck. Stanley had to use his built-in senses and
intelligence to find his way without the benefit of any outside help.

Robots like Stanley are intelligent devices capable of accomplishing tasks in an unknown
or changing environment. They do this by using sensors to collect information that
allows them to perform effectively in a changing environment.

This chapter will introduce you to sensing. Y ou will become familiar with the Ping)))
ultrasonic range sensor and then use it to create a “tractor beam.” The IntelliBrain™-Bot
educational robot will be able to sense and follow your hand, asif there were an invisible
beam attaching the robot to your hand.

Sonar Range Sensing

Figure5-1 - Ping))) Sonar Range Sensor

The IntelliBrain-Bot deluxe educational robot includes a Parallax Ping)))™ sonar range
sensor, which is shown in Figure 5-1. This sensor is able to measure the distance to an
object in front of the robot by “pinging.” This sensor detects objects by generating a

77

short high frequency sound, then listening for an echo. The sensor will hear an echo if
thereisan object in front of the robot, as shown in Figure 5-2. If there is no object, the
sound will not be reflected and the sensor will not detect an echo.

l)) Ping

Figure5-2 — Sonar Ping and Echo

Y our program can determine the distance to the object by measuring the time between
issuing the ping and hearing the echo. The further away the object is, the longer it will
take for the echo to return to the sensor.

Programming the Ping))) Sensor

The RoboJDE Class Library includes a class that provides support for the Ping))) Sensor.
This classis named ParallaxPing. However, rather than using the ParallaxPing class we
will program the sensor directly. Thiswill enable you to better understand how the
sensor functions.

The Ping))) sensor interfaces to the IntelliBrain 2 robotics controller viathree wires. The
red and black wires provide the sensor with power (red) and the ground (black). The
white wireisthe signal wire. Through clever design, one signal wire is used to both
trigger the sensor to issue a sound pulse and to communicate the echo delay back to the
robotics controller. Figure 5-3illustratesthis.

The Ping))) sensor must be connected to one of four digital input/output ports on the
IntelliBrain 2 robotics controller that provide pulse input and output features. These are
the portslabeled 103, 104, 105 and 106. The Ping))) sensor should be attached to port
|03 on the IntelliBrain 2 robotics controller.

Y our program tells the Ping))) sensor to send a sound pulse by quickly switching the
signal on the |03 port on and off. Y ou can imaginethisasif you were flipping alight
switch on and off very quickly, only your program must do it faster than humanly
possible. Infact, the pulse is so short that it is measured in millionths of a second, or
microseconds. Asindicated in Figure 5-3, the trigger pulse must be greater than 2

78 Sonar Range Sensing

microseconds (usec) long. Thistiming is so short that it can’t be done in software, it
must be done by the microcontroller chip on the IntelliBrain 2 robotics controller.

Once the Ping))) sensor receives the trigger pulse, it issues a sound pulse after first
holding off for 750 microseconds. The hold off period gives the software on the robotics
controller a chance to switch the signal from an output to an input. On the IntelliBrain 2
robotics controller, the virtual machine software takes care of briefly switching the port to
an output when your program calls the method to output a pulse, so your program doesn’t
need to be concerned with this.

The Ping))) sensor setsthe signal high (+5 volts) when it issues the sound pulse. It leaves
the signal high until it hears the first echo, at which time it sets the signal low (0 volts).
Therefore, the time for the sound burst to travel to the closest object and bounce back to
the sensor is the amount of time the signal level ishigh. Y our program can determine the
echo delay by measuring the time the signal level is high. If the sensor does not hear an
echo within 18,500 microseconds, it setsthe signal low. Thereisaso aminimum time
the Ping))) sensor will leave the signal on. Thisis 115 microseconds. It isimportant to
take note of the minimum and maximum echo delay. These limit the effective range of
the sensor.

Trigger
Pulse
Trigger Signal I
> 2 usec
Echo Signal
Hold Off Echo Delay
750 usec 115 - 18500 usec

Figure5-3—-Ping))) Sensor Signals

Create a program to measure and display the time for sound to travel from the Ping)))
sensor to the nearest object by doing the following:

1. Review the API documentation for IntelliBrain.getDigitallO and
IntelliBrainDigitallO.

2. Create anew project named PingTest.

3. Add the following import statements:

Introduction to Sensing 79

i mport comridgesoft.intellibrain.IntelliBrain;
i mport comridgesoft.io. D splay;
import comridgesoft.intellibrain.IntelliBrainDigitallQ

4. Replace the comment in the main method with a try-catch statement, as follows:

try {

catch (Throwable t) ({
t.printStackTrace();
}

5. Add statements within the try statement to get the display object and print the
name of the program.

Di splay display = IntelliBrain.getLcdD splay();
di splay. print(0, "Ping Test");

6. Add statements to get the port object for |03 and enable it to be used for pulse
measurement.

IntelliBrainDigitallO pingPort = IntelliBrain.getDigitall Q3);
pi ngPort . enabl ePul seMeasur enment (true);

7. Add aloop that loops forever.

while (true) {
}

8. Within the loop, use the pulse method of the port object to issue atrigger pulse 20
microseconds in duration.

pi ngPort . pul se(20);

9. Add astatement to put the program to sleep for 50 milliseconds, so it will not
continue until after the longest possible echo delay pulse will be able to complete.

Thr ead. sl eep(50);

10. Add a statement to read and display the duration of the echo delay pulse.

display.print(1, "Time: " + pingPort.readPul seDuration());

The readPul seDuration returns the pul se duration measurement made by the
microcontroller chip.

80 Sonar Range Sensing

11. Add another sleep method call such that the program takes two readings per
second.

Thr ead. sl eep(450) ;

12. Build, load and test the program.

Hold your hand steady in front of the sensor. Note the reading, then move your
hand closer or further away and note the new reading. The reading will increase
as you move your hand away and decrease as you move it closer. The
approximate range of the readings will be between 115 and 18,500 microseconds.

Measuring the Speed of Sound
Y ou can use your PingTest program to measure the speed of sound. With the program
running, hold the robot such that the Ping))) sensor is 1 foot from awall. The sound
pulse will travel 2 feet, asit goes from the sensor to the wall and back to the sensor. You
can calculate the speed of sound by dividing the distance traveled by the time of travel.
In this case the distance is 2 feet and the time is the echo delay measured by your
program.

speed of sound = distance traveled / time of travel

When you do this experiment, you will measure an echo delay of approximately 1800
microseconds. Performing the calculation above, you will find the speed of sound is
approximately 1100 feet/second.

Calculating Distance

Knowing the speed of sound, you can now modify your program to display distance
rather than time. To do this, you will need to use the equation:

distance = rate * time
The rate is the speed of sound. The distance we are interested in is the distance to the
nearest object. Thisis one half the distance the sound pulse travels, so we need to divide
the result by two. Substituting yeilds:
distance = speed of sound * round trip time/ 2
Substituting the value for the speed of sound and accounting for unit conversions yields:
distance = 1100 ft/sec * 12 in/ft * 1/1,000,00 sec/usec * round trip time/ 2

or

distance = round trip time / 150

Introduction to Sensing 81

where round trip timeisin microseconds and the result isin inches.

Update your program to display distance, as follows:

1.

2.

Replace the existing statement to display the sensor reading with a statement to
read the round trip time and assign it to a new variable.

i nt roundTri pTi ne = pingPort.readPul seDuration();
Add statements to only display the distance if the sensor reading is within its valid
range (115 — 18500), otherwise display “--” to indicate no object isin range.

if (roundTripTime < 115 || roundTripTime > 18500)
di splay.print(1, "Distance: --");
el se
di splay.print(1, "D stance: " + roundTripTime / 150 + '"');

Build, load and test your program.

Hold your hand at various distances. Observe the distance values displayed are
correct.

Sensor Performance

The Ping))) sensor can sense objects in a cone shaped region directly ahead of the sensor,
as shown in Figure 5-4. The dimensions of the region vary based on the properties of the
object being sensed as well as the properties of the surrounding surfaces.

Figur e 5-4 — Effective Sensing Region of Ping))) Sensor

Using the Ping))) Sensor

An interesting and fun application of the Ping))) sonar range sensor isto useit to create a
“tractor beam” effect. A tractor beam is a science fiction device that forms an invisible
connection between two objects. These devices are frequently used in fiction writing to
enable one spaceship to tow another, keeping the towed ship at afixed distance from the
towing ship.

82 Using the Ping))) Sensor

Let’swrite a program using the Ping))) sensor to create atractor beam. Once you have
completed the program, the IntelliBrain-Bot robot will be able to form an invisible
connection to an object. The robot will move forward or back to maintain afixed spacing
from to the object. When you place your hand in front of the robot, it will follow it
forward and back, creating the illusion of an invisible beam between your hand and the
robot.

Surprisingly, creating this program is not nearly as challenging asit might seem. All the
program needs to do is use the Ping))) sensor to repeatedly measure the distance to the
nearest object and adjust the power to the motors on each repetition. If the distance istoo
large, the program needs to power the motors forward. If the distance istoo small, the
program needs to power the motorsin reverse. If the distanceisjust right, the motors
need to be turned off.

Let’s go ahead and create the program, as follows:

1. Review the APl documentation for the SonarRangeFinder and ParallaxPing
classes. Pay particular attention to the getDistancel nches method.

2. Create anew project named “TractorBeam.”

3. Addimport statements to the TractorBeam.java source file for the library classes
the program will refer to.

i mport comridgesoft.intellibrain.IntelliBrain;

i mport comridgesoft.io.Dsplay;

i mport com ridgesoft.robotics. PushButton;

i mport comridgesoft.robotics. Mtor;

i mport comridgesoft.robotics. ContinuousRotati onServo;
i mport com ridgesoft.robotics. Sonar RangeFi nder ;

i mport comridgesoft.robotics. sensors. Paral |l axPi ng;

4. Place atry-catch statement in the main method.

try {

}

catch (Throwable t) {
t.printStackTrace();

}

5. Add statements within the try clause to obtain the Display for the LCD device and
print the name of the program.

Di splay display = IntelliBrain.getLcdD splay();
di splay. print (0, "Tractor Beant);

Introduction to Sensing 83

6. Create motor objects for the two motors, again within the try clause.

Mot or | eftMbtor = new ContinuousRot ati onServo(
IntelliBrain.getServo(l), false, 14);

Mot or right Motor = new Conti nuousRot ati onSer vo(
IntelliBrain.getServo(2), true, 14);

7. Create a SonarRangeFinder object for the Ping))) sensor.

Sonar RangeFi nder pi ngSensor =
new Paral | axPing(IntelliBrain.getDigital 1 Q(3));

8. Create aloop that runsforever.

while (true) {
}

©

Add statements within the loop to issue a sonar ping, wait long enough for the
echo to be heard and then read the range in inches.

pi ngSensor . pi ng() ;
Thr ead. sl eep(100);
float range = pingSensor. get D stancel nches();

10. Add statements to display the range or “--” if there is no object in range.

if (range > 0.0f)

display.print(1, Integer.toString((int)(range + 0.5f)) + '"")
el se

display.print(1, "--");

11. Build, load and test the program.

The program will display the number of inches to the nearest object or “--” if
there is no object in range.

We have used a new data type in this program we haven’t used before, float. Let’s
discuss data types before completing the TractorBeam program.

Numeric Data Types

Up until the previous exercise, the only data type we had used was “int,” to declare
integer variables. Anint type variable can represent whole numbers (integers) between -
2,147,483,648 and 2,147,483,647, inclusive. Whilethisisafairly large range of
numbers, int variables can’t represent numbers that are not whole. For example, if you
used an int variable to hold the value of Pi (3.14159...) it would have to be approximated
by the nearest whole number, 3. Additionally, if your program performs calculations
using integers, you have to be careful to avoid intermediate results that can’t be

84 Using the Ping))) Sensor

represented with adequate precision. If you aren’t careful to avoid precision problems
truncation and overflow errors may cause wildly inaccurate results. For example, if you
divide 3 by 2, the integer result will be 1. The fractional portion of the result, .5, will be
truncated because integers can only be whole numbers. If you multiply by 2 again, the
result will be two, so theresult of (3/2) * 2 will be 2, not 3. However, the result of (3 *
2) | 2iis 3, asyou would expect. Doing the division after the multiplication avoids the
truncation error.

In order to overcome the limitations of integers, Java also supports the “float” datatype.
The mgjor difference between float and int is float variables can represent real numbers,
whileint variables can only represent whole numbers. Therefore, afloat variable can
more precisely represent numbers that are not whole, such as Pi. Float values can be very
small — assmall as+1.4 x 10* — and very large — as large as +3.4 x 10%. The primary
disadvantage of the float datatypeisthat it takes significantly more computation to do
arithmetic and comparison operations than for the int data type. In other words, the same
program will run slower if it usesfloat variables instead of int variables. However,
improved precision may be worth the extra computation cost.

Java supports other data types besides int and float. These are listed in Table 5-1.
Typically, you can use int and float for most of your variables. The smaller integer data
types, byte, short and char, are useful if your program stores alarge amount of data and
you need to conserve space in the robot’s memory. The double floating point datatypeis
not fully supported by the RoboJDE virtual machine. The double data type has the same
range and precision as float the float data type, but takes up 64 bits of memory instead of
32 bitsfor afloat. Normally thiswill not present a problem, but you should use float
instead of double whenever possible.

Table5-1 - Numeric Data Types

Type |Size | Range

| nteger

byte 8 bits -128t0 127

short 16 bits -32768 to 32767

char 16 bits | 0to 65768

int 32 bits -2,147,483,648 to 2,147,483,647
long 64 bits | -2®t02%-1

Floating Point

float 32 bits | -3.4x 10® t0 3.4 x 10%

double | 64hits | -3.4x 10®to 3.4 x 10%

Selecting a Data Type

With so many data types to choose from, you might be asking yourself, how do | choose
the best one?

There are three things to consider when selecting a data type:

Introduction to Sensing 85

1. Therange and type of values the variable needs to store.

2. Therelative amount of computation time to perform arithmetic operations using
various data types.

3. The amount of memory required by the data type.

Integer data types can only represent whole numbers and have a more limited range than
floating point numbers. However, it takes significantly less time to perform arithmetic
calculations using integer datathan it does using floating point data. Normally, itis
preferable to select an integer datatype whenever an integer will suffice. Only use float
when an integer data type is not sufficient.

The amount of memory required to store variablesis only a concern when dealing with
large amounts of data. If thisisthe case, choose the smallest data type that meets your
needs, otherwise, use int or float.

The amount of time it takes for the microcontroller to perform arithmetic operations
depends on the data type your program uses. Floating point computations take
significantly longer than similar operations using integers. Therefore, you can make your
programs more efficient by preferring to use integers instead of floating point numbers.
Use integers whenever your program is working with whole numbers within the integer
range. Use floating point numbers only when whole numbers are not sufficient or the
range of integer numbersistoo small.

Java converts byte, short and char values to int values whenever they are used in
arithmetic expressions. There is no computation time advantage to using integer data
types smaller than int. However, there is a significant computation time advantage to
using int instead of long.

The RoboJDE virtual machine treats double arithmetic the same float, therefore, thereis
not a significant difference in computation time.

Converting Between Data Types

Java allows you to convert values of one datatype to another. Thisiscalled “casting.”
The cast operator is denoted by the target data type enclosed in parenthesis. For example,
“(int)” is the operator to cast from any other datatype to theint datatype. The following
code illustrates casting.

int i = 10;

byte b = (byte)i;
short s = (short)i;
char ¢ = (char)i;
float f = (float)i;

f += 0. 6f;
int j (int)f;
int k (int)(f + 0.5f);

86 Using the Ping))) Sensor

When you use casting you need to be sure the range of possible values of the source
variable will always be within the range of the destination.

Casting a floating point number to an integer causes the number to truncated, not
rounded. In the example above, the value of f, 10.6, will be truncated to 10 when
calculating the value to assign toj. Y ou can round floating point numbers by adding 0.5
before casting to an integer. 1n the example above, the value 11 will be assigned to k.

Java automatically converts byte, short and char data types to int whenever they are used
in arithmetic or logical operations. In the example below, the value of b will
automatically be cast to an int prior to multiplying it by 100. The value assigned to i will
be 12,300.

byte b = 123;
int i = 100 * b;

Implementing the Tractor Beam Effect

In order to implement the tractor beam effect we need to use distance reading
measurements to control the power applied to the motors. If the distance to the object is
further than desired, the motors need to be powered forward. If the distance to the object
isless than desired, the motors need to be powered backward. Otherwise, the motors
need to be turned off. We will use a second press of the START button to activate the
tractor beam.

1. Add thefollowing statements immediately prior to the while loop.

PushButton startButton = IntelliBrain.getStartButton();
startButton. wait Rel eased();
bool ean go = fal se;

2. Add the following statements immediately after the statement to read the range.

if (go) {
}

else if (startButton.isPressed()) {
go = true;
}

These statements cause the program to wait for the second press of the START
button before executing the code in the go clause of the if statement.

3. Within the go clause of theif statement above, add another if statement which
checksto see if there is an object within 20 inches of the robot. If thereisnot,
stop the motors.

if (range > 0.0f && range < 20.0f) {
}

el se {

Introduction to Sensing 87

| ef t Mot or. stop();
ri ght Mot or. stop();

4. Add statements within the range check clause of the above if statement to power
the motors forward if there is an object more than 6.5 inches from the robot,
power the motorsin reverse if there is an object within 5.5 inches of the robot,
and stop the motorsif thereis an object between 5.5 and 6.5 inches of the robot.

if (range > 6.5f) {
| ef t Mot or. set Power (Mot or . MAX_FORWARD) ;
ri ght Mot or . set Power (Mot or . MAX_FORWARD) ;

}
else if (range < 5.5f) {

| ef t Mot or . set Power (Mot or . MAX_REVERSE) ;
ri ght Mot or . set Power (Mot or . MAX_REVERSE) ;

}

el se {
| eft Motor. stop();
ri ght Motor. stop();

}

5. Build, load and test your program.

Place your hand in front of the sensor. If your hand is closer than 5.5 inches the
robot will backup. If your hand is further than 6.5 inches the robot will move
forward. Noticetherobot isabit jerky when it starts and stops. Thisis because
the way the programs is controlling the motors. In the next exercise we will make
the robot operate more smoothly.

Proportional Control

In the previous exercise you were able to create the tractor beam effect by powering the
motors to correct for an “error” in the desired distance to the nearest object. Thereis
error if the nearest object is not between 5.5 and 6.5 inches away from the robot. The
program attempts to eliminate the error by powering the motors in the direction that will
reduce the error. The program does thisin a simple minded way, by going forward or
back at full power until thereisno error. Thisresultsin ajerky response and
overshooting the desired position because the motors are either on at full power or
completely turned off. This approach is often called “bang-bang control” because the
program bangs the power from one extreme — off — to the other extreme — full power.

Y ou can image if you were in a car where the driver used this technique to control the
Speed, it would result in avery uncomfortable ride!

We can correct the jerky behavior by modifying the program to use “proportional
control.” With proportional control the amount of power applied to correct for the error
isvaried in proportion to the error. If the error is small, a small amount of power is
applied to the wheels. If the error islarge, alarge amount of power is applied to the
wheels. Asthe error decreases the power is decreased. If there isno error, no power is

88 Using the Ping))) Sensor

applied to the wheels. Thisis easily accomplished by making the power proportional to
the amount of error, asfollows:

power = error * gain

The gain is a constant multiplier which makes the power level proportional to the error.
Y ou can see the power will be zero if there is no error, and the greater the error, the
greater the power. The value of the gain has to be carefully determined such that the
robot will not overreact or under react to error. A reasonable gain value can be
determined by experimentation.

With the current tractor beam exercise, there is no error when the object in front of the
robot is exactly six inchesaway. Therefore, the error can be calculated by the difference
between the actual range to the object and the desired range:

error = range— 6.0
Convert your program to use proportional control as follows:

1. Replace the power setting statements with proportional control calculations.

if (range > 0.0f && range < 20.0f) {
float gain = 5.0f;
float error = range - 6. 0f;
int power = (int)(gain * error);
if (power !'=0) {
| ef t Mot or . set Power (power) ;
ri ght Mot or . set Power (power) ;
el se {
| ef t Mot or. stop();
ri ght Mot or. stop();

}
}
el se {

| ef t Mot or. stop();
ri ght Motor. stop();

}
Based on experimentation, a gain value of 5.0 has been determined to work well.

Note the calculated power value may exceed the limits defined by the

Motor.setPower method. However, the Motor.setPower method handles this by
constraining out-of-range values to the maximum or minimum, whichever is

appropriate.
2. Build, load and test your program.

The robot will now track your hand more smoothly.

Introduction to Sensing 89

Summary

In this chapter, you learned how robots can use sensors to respond to their environment.
Y ou used an ultrasonic range sensor to measure the distance to an object in front of the
robot. By measuring the time it takes for a high frequency sound pulse to travel to an
object and return back to the sensor and knowing the speed of sound, your program was
able to determine the distance to the nearest object.

Using distance measurements, you implemented a “tractor beam” by programming the
robot to strive to maintain afixed distance, six inches, from your hand. You used a
proportional control algorithm to vary the power to the robot’s wheelsin proportion to
the error between the desired distance and the actual distance to your hand. This
provided for smoother motion than the simpler bang-bang control technique, which you
also implemented.

Finally, you learned about the various numeric data types Java supports. Y ou learned

that integers can only represent whole numbers. This can lead to inaccurate results if you
are not careful to consider the effect of truncation errors. Y ou can use floating point
numbers for greater precision when working with real numbers. Doing so greatly reduces
the concern you need to have for truncation errors. However, computations using
floating point numbers take much longer than similar computations using integers.

Exercises

1. Using your PingTest program, hold the robot in your hands and face awall. Walk
toward the wall and away from the wall. What are the nearest and furthest
distances at which the sensor can accurately measure the distance to the wall?

2. Using your PingTest program, measure the dimensions of your classroom. How
high isthe celling?

3. Using your PingTest program, make several plots similar to Figure 5-4 showing
the dimensions of the effective sensing region of the Ping))) sensor. Usea
different object, such as a book, cup, jacket or another robot for each plot. How
do the properties of the object affect the ability to sense it?

4. Try various gain settingsin your TractorBeam program and observe the robot’s
response to movements of your hand. How does the robot’s behavior change if
you set the gain constant to 1.0? How does the robot’s behavior change if you set
the gain constant of 20.0?

5. Modify your TractorBeam program to enable the thumbwheel to be used to adjust

the gain constant. Run the program and use the thumbwheel to find the gain value
which you think is best.

90 Exercises

CHAPTER 6

Line Following

Figure6-1 - IntelliBrain-Bot Educational Robot Following aLine

The IntelliBrain™-Bot Deluxe education robot incorporates two Fairchild QRB1134
photo-reflective sensors on the underside of the robot, as shown in Figure 6-1. In this
chapter, you will learn how to program the robot to use these sensorsto follow aline.

Line Sensing

Signal Voltage

High

Low

Figure6-2 - Sensingaline

91

Each line sensor consists of an infrared light emitting diode (LED) and a phototransistor
mounted side by side. The LED outputsinfrared light and the phototransistor receives
infrared light. When the sensor is close to a surface, light emitted by the LED isreflected
on to the phototransistor, as shown in Figure 6-2. The voltage on the signal lead of the
phototransistor varies depending on the amount of light that is reflected on to its receiver.
When alot of infrared light is reflected on to the receiver, the voltageislow. When a
small amount of infrared light is reflected on to the receiver, the voltage is high. Hence,
the signal voltage islow when the sensor is over awhite (highly reflective) surface and
the signal voltage is high when the sensor is over a black (lessreflective) surface. The
signal voltage is highest when the sensor is not near any surface and, consequently, there
isno reflection at al.

Working with Analog Sensors

In order to make use of each line sensor, your program will need to determine the voltage
level on the sensor’s signal lead. Y our program can do this by using one of the
IntelliBrain 2 robotics controller’s built-in Analog-to-Digital converters to measure the
voltage at the signal pin. The IntelliBrain 2 controller has seven analog input ports. The
left line sensor is attached to analog port 6 and the right line sensor is attached to port 7.
Initially, we will work with just the left line sensor, which connects to analog port 6 on
the IntelliBrain 2 controller. Y ou can obtain the object for analog port 6 as follows:

Anal ogl nput |ineSensor = IntelliBrain.getAnal ogl nput (6);

Y ou can sample the voltage at the port’s signal pin using the port object’s sample
method, as follows:

int sanple I i neSensor. sanpl e();

1000

600

Sampled Value

400

200

0 1 2 3 4 5
Signal Voltage

Figure 6-3 - Sampled Value Verses Signal Voltage

The sample method uses the IntelliBrain 2 controller’s A-to-D converter to measure the
analog voltage at the port 6 signal pin and convert it to an integer value. Thevalueis
proportional to the voltage at the port’s signal pin, as shown in Figure 6-3. A sampled
value of 0 corresponds to 0 volts and a sampled value of 1023 correspondsto 5 volts.

92 Line Sensing

Testing the Line Sensor

Whenever you begin working with a new sensor, it is always a good ideato write a small
program to sample and display itsreading. Thiswill allow you to experiment and verify

the sensor functions as you expect. It will also enable you to test the sensor to make sure
it isfunctioning properly.

Let’s experiment with aline sensor by writing a simple program to sample and display its
current reading. Later, we will expand upon this program to make the robot follow aline.

1.

2.

Create a new project named LineFollowerl.

Add the following import statements:

i mport comridgesoft.intellibrain.lIntelliBrain;
i mport comridgesoft.io. D splay;
i mport comridgesoft.robotics. Anal ogl nput;

Define the LineFollowerl class and the main method.

public class LineFollowerl {
public static void main(String args[]) {

}

Within the main method, get the display object and clear both lines of the display.
Di splay display = IntelliBrain.getLcdD splay();

di splay.print(0, "");
display.print(1, "");

Get the Analoglnput object for analog input port 6, the port to which the left line
Sensor connects.

Anal ogl nput |ineSensor = IntelliBrain.getAnal ogl nput (6);

Create awhile loop to sample the sensor and display its value.

while (true) {
int sanple = lineSensor.sanple();
di splay.print(0, Integer.toString(sanple));

Build, load and test your program.

Set the robot down with the left line sensor over surfaces with various colors and

textures. Note how the line sensor reading varies depending on the reflectivity of
each surface. A flat black surface will reflect the least infrared light. In this case,
the sensor reading will be high — greater than 500. A glossy white surface will

Line Following 93

reflect the most infrared light. In this case, the sensor reading will be low — less
than 100.

ldentifying the Line

In order to follow the line, your program will need to be able to identify the line. It will
be easiest to sense the line if there is alarge contrast between the line and the background
surface. A flat black line on an opaque bright white background isideal. If you do not
have aline following poster, you can use a strip of one inch wide black electrical tape on
awhite or light colored surface to create your own line following course. Determine the
sensor reading ranges for your line following course as follows:

1. Using your LineFollowerl program, place the robot on the floor with the left line
sensor over the middle of the line and record the sensor reading in Table 6-1.

2. Repeat with the sensor over the background and over the edge of the line.

Table6-1 - Line Sensor Readings RelativetoLine

Sensor Position Sensor Reading
Over middle of line

Over background

Over edge of line

Following a Line Using One Sensor

In order to follow the line, your program will need to use the line sensor to provide
feedback indicating the position of the robot relative to the line. Y ou could program the
robot to drive straight ahead when the sensor is over the middle of the line. However,
when the robot drifts off the line, your program will have no way to know if it isleft of
theline or right of the line when using just one line sensor. Therefore, your program
would have no way of knowing whether to steer left or right to get back on course. This
isaproblem!

Y ou can solve this problem by programming the robot to follow the edge of the line,
rather than the middle of the line. By following the edge of the line, the program will
know the robot has drifted left or right of the edge. The sensor will read low when the
robot has drifted away from the edge (over the white background). It will read high when
the robot has drifted over the center of the line (over the black line). Y ou can program
the robot to follow either the left or right edge of the line. 'Y ou must choose one edge or
the other.

94 Following a Line Using One Sensor

Since we are using the left sensor, we will choose to follow the left edge of the line.
When the robot drifts off course to the left, the sensor will move over the white
background and will read low. Y our program will need to steer the robot to the right. It
can do this by applying more power to the left wheel than to the right wheel. Vice versa,
when the robot drifts right, the sensor will move over the black line. The sensor will read
high. Y our program will need to steer the robot left by applying more power to the right
whesl than the left whesl.

We can use the proportional control technique you learned about in the previous chapter
to correct for an error in the robot’s position relative to the line. In this case, your
program will need to steer the robot left or right depending on the error it sensesin the
robot’s position relative to the line. Y our program will need to apply more power to one
motor and less power to the other motor to steer the robot left or right. 1t can do this by
calculating an offset proportional to the error between the desired sensor reading — the set
point — and the actual sensor reading, then applying the offset to the power applied to
each wheel. By adding the offset to the power applied to one motor and subtracting it
from the power applied to the other motor, the robot will arc left or right, back toward the
edge of the line. The greater there error, the more aggressively the robot will turn.

The power offset can be calculated as follows:
offset = (setPoint - reading) * gain

Y our program will steer the robot by applying the offset in opposite directions when
applying power to the motors, as follows:

leftPower = power + offset
rightPower = power - offset

In this way the average power applied to the motors will be positive, ensuring the robot
moves forward. The offset will cause the robot to arc left or right as it moves forward.

Extend your LineFollowerl program to program the robot to follow the line, as follows:

1. Addimport statements for PushButton, Motor and ContinuousRotationServo.

i mport comridgesoft.robotics. PushButton;
i mport comridgesoft.robotics. Mtor;
i mport comridgesoft.robotics. ContinuousRotati onServo;

2. Add statements to create two Motor objects.

Motor |eftMtor =

new Conti nuousRotati onServo(lntelliBrain.getServo(1l), false, 14);
Mot or right Motor =
new Conti nuousRot ati onServo(IntelliBrain.getServo(2), true, 14);

Line Following 95

3. Add statements to retrieve the start button object and wait for the start button to
be released.

PushButton startButton = IntelliBrain.getStartButton();
startButton. waitRel eased();

4. Modify the existing while loop condition to loop until the start button is pressed a
second time.

while (!startButton.isPressed()) {

5. Add asecond loop after the first loop to execute the control algorithm once the
start button has been pressed a second time.

di splay.print(0, "Following line");
while (true) {

int sanple = lineSensor.sanple();
}

6. Determine the set point value to use in the proportional control equation by
averaging the over line and over background sensor readingsin Table 6-1.

By choosing the midpoint between the extreme readings as the set point, the
control algorithm will strive to maintain the sensor’s position near the edge of the
line.

7. Estimate avalue for the gain constant and add a statement to your program to
declare and initialize avariable named gain. Insert this statement prior to the first
loop.

One way to estimate the gain constant is to choose a value such that, at the
extremes, one wheel will receive full power and the other wheel will receive no
power. Assuming a base motor power setting of 8, the maximum desired power
offset is8. Thiswill result in one motor receiving full power (16) and the other
motor receiving no power (0) in the most extreme cases. The maximum variation
of any sensor reading from the set point will be less than the half the range of
possible readings from the sensor. The full range of an analog port is 0 to 1023.
Therefore, half of the rangeis512. Dividing the maximum desired offset, 8, by
half the sensor range, 512, yields an estimate for the gain constant of 0.016.

float gain = 0.016f;

8. Within the second loop, after the statement to sample the sensor, add the
proportional control equation to calculate the power offset in the go branch of the
if statement.

96 Following a Line Using One Sensor

float offset = (360.0f - (float)sanple) * gain;

9. Following the offset calculation, set the power to each motor, adding the offset to
the base setting for the left motor and subtracting it from the base setting for the
right motor. Use 8 as the base power setting.

| ef t Mot or. set Power ((int)(8.0f + offset));
ri ght Mot or. set Power ((int)(8.0f - offset));

10. Build, load and test your program.

Set the robot down with the left line sensor over the left edge of theline. Press
the start button once to start the program and a second time to start the robot
following the line. Observe the robot’s ability to follow theline. If therobot is
sluggish in responding and drifts away from the line or over the line, try
increasing the gain constant about 10%. If the robot isjittery, try decreasing the
gain constant about 10%.

Following a Line Using Two Sensors

Using a second line sensor will allow you to use an entirely different approach to
programming the robot to follow aline. With two line sensors your program can detect
if the robot isleft, right or centered over theline. In contrast, with only one sensor your
program could only determine if the sensor was over the line or not. 1t had no way to
know if it was left or right of the line without following one edge of the line. With two
sensors, your program can sense which side of the line the robot ison. Therefore, it can
correct for left or right drifts.

Using a Finite State Machine

Considering the position of the two sensors relative to the line, at any point in time the
robot will be in one of the six states listed in Table 6-2. These states are defined by the
position of the sensorsrelative to the line. The actions listed in the table define the action
your program will need to take in order to cause the robot follow the line. For example,
when both sensors are over the line, your program will need to steer the robot straight
ahead. If therobot drifts dightly left, such that the left sensor is not over the line, but the
right sensor is over the line, your program will need to steer slightly right. If the robot
drifts so far left that both sensors are |eft of the line, your program will need to steer the
robot hard to the right to get back to the line. Similarly, your program will need to steer
left when the robot drifts right.

The Lost state in Table 6-2 is necessary to account for the possibility that your program
won’t know if the robot isleft or right of the line when neither sensor sensesthe line.
This can occur when the program is started when both sensors are off the line. It can also
occur if the robot drifts off the line so fast that your program misses whether the robot
was drifting left or drifting right. Finaly, it can occur if the robot drives off the end of
theline. Inany of these cases, the robot has gotten lost. The program should, therefore,
stop the robot rather than risk wandering into a hazard.

Line Following 97

Table6-2 - Line Sensing States

State Name | State Description Action

Lost Neither sensor over line, position unknown | Stop

Both Left Both sensors left of line Steer hard right
One Left One sensor left of line Steer dlightly right
Centered Both sensors over line Steer straight ahead
One Right One sensor right of line Steer dightly left
Both Right | Both sensorsright of line Steer hard left

Another way to represent these states is using a state diagram, as shown in Figure 6-4.
This diagram may look like a bewildering set of bubbles and connecting arrows, but once
you understand the notation it isfairly easy to comprehend.

left high left low
right low right high

left high
right low

left high

right high right low

left low
right high

left high
right low

Figure6-4 - Line Sensor State Diagram

Notice that the six states we have already discussed are each represented by a bubblein
the diagram. The arrows represent the conditions that cause the state machine to
transition from one state to another. The specific conditions which cause each transition
are listed next to the arrow for that transition. In this case, the conditions are changesin
the line sensor readings. For example, the state machine will transition to the Centered
state anytime both sensors read high. Observe that the state machine can transition into
this state from any of the other five states. Each of the five transitions leading to the
Centered state is due to the same condition, both sensors reading high. That is, each
sensor is over the line and, therefore, the robot is approximately centered over the line.

98 Following a Line Using Two Sensors

Further examining the diagram, notice for each state there are three conditions that cause
atransition out of the state. These occur when the sensor readings aren’t the readings
expected for that state. Thisis dueto the fact that there are four permutations of sensor
readings. (low, low), (low, high), (high, low) and (high, high). For each state, one
permutation corresponds to that state and the other three indicate a condition that causes a
transition to a different state. Hence, there are three conditions for each state that will
result in atransition to a different state.

Lastly, note that three of the permutations of sensor readings correspond to exactly one
state: low, low — One Left; high, high — Centered; and high, low — One Right. All of the
transitions into these states are due to the same conditions. However, both sensors
reading may indicate any one of three states: Both Left, Both Right and Lost. In this
case, the previous state determines the new state. If the robot was drifting left (One Left)
when both sensors began reading low, it indicates the robot has drifted further left of the
line and entered the Both Left state. Likewise, if the robot was drifting right (One Right)
when both sensors began reading low, it indicates the robot has drifted further right of the
line and entered the Both Right state. If both sensors were over the line (Centered) and
suddenly they both begin reading low, thereisn’t any way to know if the robot drifted
left, right or ran off the end of the line. Therefore, the robot has entered the Lost.

Table6-3 - State Transition Table

Conditions (left sensor, right sensor)
Current State (low, low) (low, hi) (hi, low) (hi, high)
Lost Lost One Left One Right Centered
Both Left Both Left One Left One Right Centered
One Left Both Left One Left One Right Centered
Centered Lost One Left One Right Centered
One Right Both Right | One Left One Right Centered
Both Right Both Right | One Left One Right Centered

Defining a State Machine

Y ou can define a state machine in software by representing it astables of data. The
tables specify the operation of the state machine. Using tables reduces the complexity of
the logic you will need to program. The statements to implement the state machine
reduce down to the following pseudo code:

while (true) {
sanpl e sensors
eval uate conditions
| ookup the new state
performactions for the new state

}
Let’s begin developing a program to use this method of following aline.

1. Create anew project named LineFollower2.

Line Following 99

2. Addimport statements for IntelliBrain, Display and Analoglnput.

i mport comridgesoft.intellibrain.IntelliBrain;
i mport comridgesoft.io. D splay;
i mport com ridgesoft.robotics. Anal ogl nput ;

3. Add statements to sample and display the readings of both line sensors.
Di splay display = IntelliBrain.getLcdD splay();

Anal ogl nput | eftLi neSensor =

I ntelliBrain. get Anal ogl nput (6);
Anal ogl nput rightLi neSensor =

IntelliBrain. get Anal ogl nput (7);

while (true) {
int leftSanple = | eftLineSensor.sanple();
int rightSanmple = rightLi neSensor. sanple();
di splay.print(0, Integer.toString(leftSanmple) + '
+ Integer.toString(rightSanple));
}

4. Build, load and test your program.

Place the robot over the line and observe the sensor readings. Change the robot’s
position to correspond to each of the four possible combinations of sensor
conditions: 1) both high (centered over line), 2) both low (entirely off line), 3) left
low and right high (dlightly left of center) and 4) left high, right low (dlightly right
of center). Verify that both sensors read as expected. Also, note the highest and
lowest readings of each sensor.

Next you will need to create the state tablesin your program. We will use another feature
of Java we have not used before as we create the tables, constants.

Constants

Constants are variables you declare in you program that have a value that does not
change. You initialize the variable with its constant value when you create it. Y ou can
do thisasfollows:

private static final byte LOST = O;
private static final byte BOTH LEFT = 1;
private static final byte ONE_LEFT = 2;
private static final byte CENTERED = 3;
private static final byte ONE_RI GHT = 4;
private static final byte BOTH Rl GHT = 5;

Notice these constants are byte variables declared with the “final” keyword. This
keyword specifies the values are final and cannot be changed when the program is
running. If you put a statement in your program to assign anew value to afinal variable,
the Java compiler will report an error.

100 Following a Line Using Two Sensors

Arrays

Arrays provide away to organize a collection of related data of the same type. For
example, you can use an array to keep track of the possible state transitions from one
particular state to the next state. For the Lost state, the list of next states may be
organized in an array asfollows:

LOST ONE_LEFT | ONE_RIGHT | CENTERED

Y ou can define this as a byte array in your program using following statement:

byte[] nextState =
new byte[] { LOST, ONE_LEFT, ONE_RI GHT, CENTERED };

Note, the values between the braces ({ }) initialize the elements of the array.

Each element of an array isidentified by an integer index, starting with zero. The
elements of the array are indexed as follows:

0 1 2 3

LOST ONE_LEFT | ONE_RIGHT | CENTERED

Y our program can access an element of an array using itsindex. For example:

state = nextState[2];

After executing this statement, the value of state would be the value of the constant
ONE_RIGHT, whichis 4.

We can use atwo dimensional array to represent the entire state transition table as
follows:

0 1 2 3
0 LOST ONE_LEFT ONE_RIGHT CENTERED
1| BOTH_LEFT ONE_LEFT ONE_RIGHT CENTERED
2| BOTH_LEFT ONE_LEFT ONE_RIGHT CENTERED
3 LOST ONE_LEFT ONE_RIGHT CENTERED
4| BOTH_RIGHT ONE_LEFT ONE_RIGHT CENTERED

Line Following 101

BOTH_RIGHT

ONE_LEFT

ONE_RIGHT

CENTERED

Y ou can define this as atwo dimensional array in your program as follows:

private static final byte[][] NEXT_STATE = new byte[][] {
new byte[] { LOST, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH LEFT, ONE LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH_LEFT, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { LOST, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH_RI GHT, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH RI GHT, ONE_LEFT, ONE_RI GHT, CENTERED },

s
Y our program can access an element in this two dimensional array asfollows:

state = NEXT_STATE[3][0];

Thefirst index value selects the byte array corresponding to a particular state and the
second index selects the element within that array. Therefore, in the statement above, the
variable state will be assigned the value of LOST, whichisO.

Thefirst index of the state transition array is the current state and the second index
corresponds to the condition that causes the transition to the new state. Replacing the
numeric value of the first index with the corresponding state name and listing the
corresponding sensor conditions above the second index, the state transition table is as
follows:

(low, low) (low, high) (high, low) (high, high)
0 1 2 3

LOST LOST ONE_LEFT | ONE_RIGHT | CENTERED
BOTH_LEFT | BOTH_LEFT | ONE LEFT | ONE RIGHT | CENTERED
ONE_LEFT | BOTH LEFT | ONE LEFT | ONE RIGHT | CENTERED
CENTERED LOST ONE_LEFT | ONE_RIGHT | CENTERED
ONE_RIGHT | BOTH_RIGHT | ONE_LEFT | ONE_RIGHT | CENTERED
BOTH_RIGHT | BOTH_RIGHT | ONE_LEFT | ONE RIGHT | CENTERED

We have conveniently chosen the index values corresponding to the sensor conditions
such that each of the two least significant binary digitsin the index corresponds to one
sensor, asindicated in Table 6-4. The least significant bit corresponds to the right sensor.

102 Following a Line Using Two Sensors

The next most significant bit corresponds to the left sensor. A bit value of O corresponds
to alow reading and the bit value 1 corresponds a high reading.

Table 6-4 - Condition Index Value

Sensor Conditions I ndex

L eft Right Binary | Decimal
low low 00 0
low high 01 1
high low 10 2
high high 11 3

The condition index can be calculated as follows:

int conditions = O;
if (leftSanple > THRESHOLD)

condi tions | = 0x2;
if (rightSanmple > THRESHOLD)
conditions | = Ox1;

THRESHOLD is a constant defining the threshold value that distinguishes between high
and low sensor readings.

Given the state transition table, the current state and the conditions index, transitioning to
the new state requires only the following line of code:

state = NEXT_STATE[state][conditions];

Implementing Two Sensor Line Following

Extend your LineFollower2 program to track and display the current state by completing
the following steps:

1. Right after the class definition, declare a constant to define the threshold between
high and low readings of the line sensors.

Choose a value hafway between the low value the sensor reads when it is over
the background and the high value it reads when over the center of theline. For a
bright white background and black line, avalue of 300 usually works well.

private static final int THRESHOLD = 300;

2. Declare constants to identify the six states.

private static final byte LOST = O;
private static final byte BOTH LEFT = 1;
private static final byte ONE_LEFT = 2;
private static final byte CENTERED = 3;
private static final byte ONE_RI GHT = 4;
private static final byte BOTH Rl GHT = 5;

Line Following 103

3. Declare the state transition table.

private static final byte[][] NEXT_STATE = new byte[][] {
new byte[] { LOST, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH_LEFT, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH LEFT, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { LOST, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH_RI GHT, ONE_LEFT, ONE_RI GHT, CENTERED },
new byte[] { BOTH_RI GHT, ONE_LEFT, ONE_RI GHT, CENTERED },

}s

4. Just prior to the start of the while loop, declare variables for the current state and
the name of the current state.

int state = LOST,;
String stateNane = "Starting";

5. Just after the statements that sample the line sensors, add code to determine the
condition index corresponding to the sampled readings.

int conditions = O;
if (leftSanple > THRESHOLD)

conditions | = 0x2;
if (rightSanple > THRESHOLD)
conditions | = Ox1;

6. Following this, add a statement to determine the new state from the current state.

state = NEXT_STATE[state][conditions];

7. Finaly, add a switch statement to update the stateName variable to match the new
state.

switch (state) {
case BOTH_LEFT:
stateNane = "Both Left";
br eak;
case ONE_LEFT:
st at eNane
br eak;
case CENTERED:
st at eName
br eak;
case ONE_RI GHT:
stateNane = "One Right";
br eak;
case BOTH_RI GHT:
stateNane = "Both Right";
br eak;
case LOST:
stateName = "Lost";
br eak;

"One Left";

"Cent ered";

}
8. Finally, output the name of the new state on the LCD display.

104 Following a Line Using Two Sensors

di splay. print(1, stateNane);
9. Build, load and test your program.

Set the robot down with both sensors over the line. Start the program and verify
that the second line of the LCD displays “Centered.” Without lifting the robot up,
gently dlide it left so the left most line sensor is over the background while the
right most line sensor is still over theline. Verify the LCD displays, “One Left.”
Slide the robot further left, so both sensors are over the background. Verify the
LCD displays, “Both Left.” Repeating the same procedure, slide the robot right,
verifying the correct state names display. Finaly, stop the program, place the
robot with both sensors over the background, restart the program and verify the
displayed state nameis “Lost.”

Thefinal step in implementing your LineFollower2 program is to program the robot to
perform the actions defined in Table 6-2. We will program the robot to steer dightly left
or right by reducing the power to the left or right wheel, respectively. We will program it
to steer hard left or hard right by turning the power off for the left or right wheel,
respectively. Similar to the state table, the an action table can be created as another two
dimensional array.

We will also modify your program such that it will begin performing actions after a
second press of the START button. Thiswill allow you to test the sensors and position
the robot over the line before starting it moving.

Update your LineFollower2 program as follows:

1. Addimport statements for PushButton, Motor and ContinuousRotationServo.

i mport com ridgesoft.robotics. PushButton;
i mport comridgesoft.robotics. Mtor;
i mport comridgesoft.robotics. ContinuousRot ati onServo;

2. Define constants for normal and low motor power.

private static final byte NORMVAL = 10;
private static final byte LON= 5;

3. Define constants to index the left and right elements of the action table, which
you will create next.

private static final byte LEFT = O;
private static final byte RIGHT = 1;

4. Useatwo dimensional array to create an action table that contains the power
settings for each motor to achieve the desired action for each state.

private static final byte[][] PONER = new byte[][] {
new byte[] { O, 0 }, /1 LOST
new byte[] { NORMAL, O }, // BOTH LEFT

Line Following 105

new byte[] { NORMAL, LOW }, /1 ONE_LEFT
new byte[] { NORMAL, NORMAL }, // CENTERED
new byte[] { LOW NORMAL }, // ONE_RIGHT
new byte[] { O, NORMAL }, // BOTH_RI GHT

s
5. Add statements to create motor objects.

Mot or |eftMtor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(1l), false, 14);
Mot or right Motor =

new Conti nuousRot ati onServo(IntelliBrain.getServo(2), true, 14);

6. Add statements to obtain the START button object and wait for it to be released.

PushButton startButton = IntelliBrain.getStartButton();
startButton. wai t Rel eased();

7. Just prior to the while loop, define a variable to keep track of whether the START
button has been pressed a second time.

bool ean go = fal se;

8. Following the statement that updates the state, add an if statement that provides
branches to either update the motor power settings or to check if the START
button has been pressed. Within the branch, update the power applied to each
motor according to the action table.

if (go) {
| ef t Mot or . set Power (PONER] st at e] [LEFT]) ;
ri ght Mot or. set Power (PONER] st ate] [Rl GHT]) ;

else if (startButton.isPressed()) {
go = true;
}

9. Build, load and test your program.

Place the robot on the line, start the program, press the START button a second
time and verify the robot follows the line.

Summary

In this chapter, you learned how to work with analog sensors. Y ou experimented with
two photo reflective infrared sensors, which you used as line sensors. Y ou used the
IntelliBrain 2 controller’s analog-to-digital converter to sample the sensors. This allowed
your program to obtain an integer value proportional to the voltage on sensor’s signal
line.

Y ou learned that the voltage of the signal output of aline sensor varies with the amount
of infrared light reflected from the sensor’s transmitter LED on to the sensor’s receiving
phototransistor. When the sensor is over a white background the voltageislow. When
the sensor isover a black line the voltage is high.

106 Summary

Using the difference in sensor reading, you created a program that used one line sensor to
provide feedback on the robot’s position relative to the line. By implementing a
proportional control algorithm you were able to program the robot to follow the edge of a
line using just one sensor. Subsequent to this, you wrote another program to use both
sensors to implement a state machine which also enabled the robot to follow the line
using an entirely different control algorithm.

In the process of writing these programs you learned how to use constants and arrays.
Constants give names to numeric values that you use in your programs, making your
programs easier to read and maintain. Arrays provided a means for you to store and
access tabular datain your program.

Exercises

1. Using your LineFollowerl program, set the robot down with the left line sensor
over surfaces with various colors and textures. Record the surface characteristics
and the associated sensor readings for several surfacesin Table 6-5. Using the
chart in Figure 6-3, estimate the sensor’s signal voltage for each reading and
record it in thetable.

2. Using your LineFollowerl program, take a number of readings varying the left
line sensor’s distance above a bright white surface. Record the distances and
associated readingsin Table 6-6. Using the chart in Figure 6-3, estimate the
sensor’s signal voltage for each reading and record it in the table. Plot the sensor
reading verses distance from the surface.

3. Change your LineFollowerl program so the robot follows the right edge of the
line rather than the left edge.

4. Modify your LineFollowerl program to allow the thumbwheel to be used to
adjust the gain value without having to modify the program. Observe the robot’s
ability to follow the line using various gain values. What happensif you choose a
gain value that istoo small? What happensif you choose a gain value that is too
high? What isthe ideal gain value?

Hint: Add statements to sample the thumbwheel, calcul ate the gain, and display
its value within the first loop. Multiplying the sampled thumbwheel value by
0.00003 to obtain the gain value will allow for fine tuning the gain.

5. Using your LineFollower2 program, complete Table 6-7 by placing the robot on

the line following course with the sensor positions indicated in the left two
columns. Record the sensor readings and the state.

Line Following 107

Table 6-5- Line Sensor Readingsfor Various Surfaces

Surface Color Surface Texture Sensor Reading | Sensor Voltage
Table 6-6 — Line Sensor Readings Verses Distance
Distance Sensor Reading Sensor Voltage

108 Exercises

Table 6-7 — Robot States

Sensor Position Sensor Reading
L eft Right L eft Right State
Over line Over line
Over line Off line
Off line Over line
Off line Off line

Line Following 109

