
                    

www.ridgesoft.com

    

Revision 1.2 



Programming Your Robot to Navigate  1  

Copyright © 2005 RidgeSoft, LLC 

Introduction 
Whether you are building a robot to explore another planet, compete in the 
DARPA Grand Challenge, rescue victims of a disaster or just satisfy your own 
curiosity, it s likely you ll want it to have the ability to navigate from place to place 
on its own.  This tutorial will show you how to do that by building on concepts and 
software components from several other tutorials.  

The tutorial, Programming Your Robot to Perform Basic Maneuvers, 
demonstrates how you can program your robot to move straight forward and 
rotate in place.  By programming timed sequences of these simple maneuvers 
you can make your robot move in more complex patterns; however, you are likely 
to find your robot does not maneuver as predictably as you would like.  
Unfortunately, this technique 

 

simply programming your robot to turn its motors 
on and off in predetermined timed sequences 

 

fails to account for varying 
conditions your robot will encounter.  Your robot s actual performance will vary 
significantly as battery level, floor texture, and other factors change.   

This tutorial will demonstrate how you can use position feedback to improve your 
robot s ability to navigate.  You will integrate shaft encoding and localization 
classes from the Creating Shaft Encoders for Wheel Position Sensing and 
Enabling Your Robot to Keep Track of its Position tutorials to take advantage of 
position feedback.  By incorporating position feedback, your robot will be able to 
act on real-time measurements of its actual performance rather than blindly 
following an inflexible sequence of operations.   

Before You Get Started 
This tutorial builds on topics covered in the following tutorials:  

Creating Your First IntelliBrain Program 
Programming Your Robot to Perform Basic Maneuvers 
Creating a User Interface for Your Robot 
Creating Shaft Encoders for Wheel Position Sensing 
Enabling Your Robot to Keep Track of its Position  

If you are not already familiar with the concepts covered in these tutorials, you 
should complete them first, before attempting this tutorial.  This and other 
tutorials are available from the RidgeSoft web site, www.ridgesoft.com.   

The programming steps in this tutorial build on the MyBot program developed in 
the tutorial, Enabling Your Robot to Keep Track of its Position.  

You will need an IntelliBrain -Bot educational robot kit to complete this tutorial. 



Programming Your Robot to Navigate  2  

Copyright © 2005 RidgeSoft, LLC 

Understanding How to Program Your Robot to Navigate 
Before you embark on programming your robot to navigate, you will first need to 
think about how your program will go about solving the navigation problem.  
You can do this by breaking down the problem into smaller problems.  In order to 
navigate effectively your robot must:  

1. know where it wants to go, 
2. know where it is and what direction it is facing, 
3. determine the heading (direction to) its destination, 
4. steer to and maintain the heading to its destination, and 
5. stop when it has reached its destination. 

Knowing Where to Go 
Knowing where to go is easy, at least for your navigator.  It is the responsibility of 
higher level software to specify the course to take.  Your navigator will only need 
to provide a means for it to be told where your robot should go next.  Therefore, it 
will need to provide methods that allow higher level software to set the next goal.  
The following four methods will serve this purpose:  

1. moveTo - move to a specified location, 
2. turnTo - turn to face a particular direction, 
3. go - move continuously in one direction, and  
4. stop.    

Figure 1  Navigation and Localization Class Diagram 

Knowing Where Your Robot Is 
Enabling your robot to keep track of where it is isn t particularly easy; however, if 
you have completed the tutorial Enabling Your Robot to Keep Track of its 
Position you will know how to create classes that solve this problem.  With two 
shaft encoder sensors (see the Creating Shaft Encoders for Wheel Position 
Sensing tutorial) and the OdometricLocalizer class, your robot will be able to 
keep track of its position.  You can feed position data back into your navigator by 
interfacing it to an instance of your OdometricLocalizer class, as shown in Figure 
1. 

Navigator 
Localizer Sensors 

Motors 

Pose 



Programming Your Robot to Navigate  3  

Copyright © 2005 RidgeSoft, LLC 

Determining Where to Head 
Using the output of an OdometricLocalizer object, your navigator can use 
trigonometry to calculate the heading to its next destination.  

Figure 2 depicts your robot heading toward its destination.  The location of the 
destination relative to your robot s current position in Cartesian coordinates is 
(xError, yError), the x and y components of the error between where it is and 
where it is trying to go.  The heading is the angle to the destination.   

Figure 2 - Navigating to a Point 

Your navigator can calculate xError and yError by subtracting its current x and y 
coordinates from those of the destination:  

xError = destinationX 

 

x 
yError = destinationY 

 

y  

Recalling from trigonometry, the heading is the arc tangent of yError divided by 
xError:  

heading = arctan(yError / xError) 

Steering to and Maintaining a Heading 
Once your navigator has calculated the direction your robot needs to head, it 
must apply power to the motors to steer your robot such that it maintains the 
heading and moves forward.  This may sound hard to accomplish, but it turns out 
it is fairly easy to accomplish.    

The key to keeping your robot heading toward its destination is recognizing that it 
will move approximately straight ahead when your navigator applies the same 
power to both wheels.  Your navigator can steer your robot left or right as it 

y 

x 

heading

 

Destination

 

xError

 

yError

 



Programming Your Robot to Navigate  4  

Copyright © 2005 RidgeSoft, LLC 

moves forward by applying slightly more power to one wheel than the other.  The 
further off course your robot is, the harder your navigator will need to steer to 
quickly return to the desired heading; therefore, the larger the error, the larger the 
power differential it will need to apply to steer back on course.   

This technique is an application of proportional control, an extremely widely 
used method for controlling dynamic systems.  It gets its name because the 
output of the controller 

 

in this case, your navigator 

 

is proportional to the error 
between the actual value and the target value of the variable being controlled  in 
this case, your robot s heading.   

Figure 3 - Heading Error 

Consider the situation shown in Figure 3.  The robot is heading forward, but 
slightly off its desired heading.  The navigator can correct for the error in heading 
by applying slightly more power to the right wheel than the left wheel.  The 
amount of power to apply to each wheel can be calculated according to the 
following equations:  

leftWheelPower = drivePower  differential 
rightWheelPower = driverPower + differential  

The drivePower is the base level of power applied to the wheels to move straight 
ahead.  The differential variable controls the difference in power applied to the 
two wheels.  The power differential can be made proportional to the heading 
error using the equation:  

differential = gain * error 

Desired 
Heading 

Error 



Programming Your Robot to Navigate  5  

Copyright © 2005 RidgeSoft, LLC  

Hence, the difference in power applied to the wheels will become larger as the 
error increases, causing the robot to respond more forcefully to get back on 
course.  When the error is zero both wheels will receive the same power.    

The gain value in the previous equation is a constant value that controls how 
aggressively your navigator will respond to error.  A large gain constant will result 
in an aggressive response to error.  However, too large a gain will cause your 
robot to over-steer and oscillate wildly.  Setting the gain too small will result in a 
sluggish response to error or no response at all.  

-0.5

0

0.5

1

1.5

2

2.5

3

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00
22

50
25

00
27

50
30

00
32

50
35

00
37

50
40

00
42

50
45

00
47

50
50

00
52

50
55

00
57

50
60

00

Time (ms)

H
ea

d
in

g
 (

ra
d

ia
n

s)

Target

Actual (gain = 6.0)

Actual (gain = 25.0)

Actual (gain = 100.0) 

Figure 4 - Navigator Response to Heading Change 

Figure 4 shows measurements of the response of a real robot to a sudden 
change of the target heading.  These measurements were taken using the 
TestNavigatorResponse class included in Appendix A.  With the gain set to 6.0 
the robot was slow to respond to the change and the robot drifted off course.  
With the gain set to 100.0 the robot over steered and displayed erratic motion.  
Setting the gain to 25.0 yielded a quick response and good stability.  

Finally, in order to keep your robot heading to its destination, your navigator will 
frequently need to readjust the power it applies to the wheels; otherwise, it will 
quickly wander off course.  It can do this by periodically taking into account its 
current position and repeating all of the navigation calculations.  



Programming Your Robot to Navigate  6  

Copyright © 2005 RidgeSoft, LLC 

A convenient way of implementing this is to use a separate thread for navigation.  
This thread can perform the navigation calculations then sleep for a short period 
of time before repeating the process. 

Determining When to Stop 
Your navigator will need to stop your robot when it reaches its destination.  You 
might think all your navigator has to do is turn off the motors when its current 
position is the destination.  Unfortunately, it isn t quite that simple!  

It is easy to forget your robot is not a high precision system.  It will not navigate 
with perfect accuracy.  Although it can navigate to close proximity of its 
destination, if you insist on extreme precision you will discover that your robot will 
get close to its destination and then begin to flounder around attempting to reach 
the exact destination.  In robotics, you usually have to accept close as being 
good enough!  Instead of insisting on perfect navigation, your robot will perform 
better if you relax your accuracy requirements and program it to stop within 
reasonable proximity of its destination.  

Your robot could use the Pythagorean Theorem to determine its proximity to the 
next destination.  However, this calculation requires calculating a square root, 
which is takes a lot of time to compute.  Instead, you can use the sum of the 
absolute values of the two error terms, xError and yError, as a rough 
approximation of how far your robot is from its destination.  This will not yield the 
exact distance, but it will be good enough and far easier to calculate. 

Controlling Servo Speed 
Before you begin implementing your navigator you will first need to develop a 
class to provide finer control of the servos that power your robot s wheels.  In 
other tutorials you learned how to maneuver your robot by simply turning the 
servo motors on and off.  However, steering your robot while it drives forward 
requires more precise control of the power it applies to each wheel.  Simply 
turning the motors on or off will not provide sufficient control.  

The servos included with the IntelliBrain-Bot kit incorporate modifications that 
enable them to rotate continuously so they function like motors, rather than as 
conventional servos.  Modified servos are commonly called continuous rotation 
servos.  Even though continuous rotation servos function mechanically like 
motors, your program still controls them using servo positioning commands 
provided by the setPosition method of the Servo interface.  When used with an 
unmodified servo, this method allows your program to set the shaft position 
between 0% and 100% of its range of motion. 



Programming Your Robot to Navigate  7  

Copyright © 2005 RidgeSoft, LLC 

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20

Position Setting (offset from 50)

R
at

e 
(c

o
u

n
ts

)

Left Encoder

Right Encoder 

Figure 5 - Servo Speed Verses Position Input Setting 

With a continuous rotation servo, setting the position to the midpoint, 
setPosition(50), reduces the power to zero.  Hence, this is the neutral point 
because there is no power applied to the servo shaft.  Setting the position to a 
value greater than 50 causes the servo shaft to turn in the forward direction.  
Setting the position to a value less than 50 causes the servo shaft to turn in the 
reverse direction.  

Unfortunately, the power output by the servos included with the IntelliBrain-Bot kit 
is not linearly related to the value you provide in the setPosition command.  The 
servos reach their maximum power and speed long before the position value 
reaches the extremes of the input range, 0 and 100.  Figure 5 shows this.  

The data charted in Figure 5 was collected using the TestServoResponse class, 
which is listed in Appendix B.  This chart shows that the wheels reach maximum 
speed when the position value reaches 14 units above or below the neutral point, 
which is 50 percent.  Therefore, the effective range of the position setting is 
roughly 50±14 (36 to 64).  Varying the position setting within this range will affect 
the wheel speed.  Additional variation beyond this range will have no effect.  

The RoboJDE class library defines a generic motor interface named Motor.  
You will need to create a Motor façade around the Servo class by creating a new 
class that implements Motor interface and translates setPower commands to 



Programming Your Robot to Navigate  8  

Copyright © 2005 RidgeSoft, LLC 

setPosition commands.   This will allow your navigator to control the servos as if 
they were motors.  And, more importantly it will allow your navigator class to be 
used with robots that use conventional DC motors as well as modified servos.  

Using RoboJDE, create a new class named ContinuousRotationServo with the 
following code:  

import com.ridgesoft.robotics.Motor; 
import com.ridgesoft.robotics.Servo;  

public class ContinuousRotationServo implements Motor { 
    private Servo mServo; 
    private boolean mReverse; 
    private int mRange; 
    private DirectionListener mDirectionListener; 
     
    public ContinuousRotationServo(Servo servo, 
                        boolean reverse, int range) { 
        mServo = servo; 
        mReverse = reverse; 
        mRange = range; 
        mDirectionListener = null; 
    } 
     
    public ContinuousRotationServo(Servo servo, 
                        boolean reverse, int range, 
                        DirectionListener directionListener) { 
        mServo = servo; 
        mReverse = reverse; 
        mRange = range; 
        mDirectionListener = directionListener; 
    }  

    public void setDirectionListener( 
                        DirectionListener directionListener) { 
        mDirectionListener = directionListener; 
    }  

    public void brake() { 
        // servos don't provide braking, just turn the power off 
        setPower(Motor.STOP); 
    }  

    public void setPower(int power) { 
        if (mDirectionListener != null) 
            if (power != 0) 
                mDirectionListener.updateDirection(power > 0); 
        if (mReverse) 
            power = -power;  

        if (power == 0) { 
            mServo.off(); 
            return; 
        } 
        else if (power > Motor.MAX_FORWARD) 



Programming Your Robot to Navigate  9  

Copyright © 2005 RidgeSoft, LLC 

            power = Motor.MAX_FORWARD; 
        else if (power < Motor.MAX_REVERSE) 
            power = Motor.MAX_REVERSE;  

        mServo.setPosition( 
                    (power * mRange) / Motor.MAX_FORWARD + 50); 
    } 
}  

The setPower method contains the most interesting code in this class.  This 
method sets the power using the following line of code:  

mServo.setPosition((power * mRange) / Motor.MAX_FORWARD + 50);  

The mRange variable is the effective range above and below the neutral value, 
50.   According to the previous analysis, mRange should be 14 for the servos 
included in the IntelliBrain-Bot kit.  Rather than hard coding the value 14, it is 
preferable to provide for it to be specified in the ContinuousRotationServo class s 
constructor.  This will allow the class to be reused with other continuous rotation 
servos that may have somewhat different characteristics.  

If a DirectionListener has been configured, the setPower method updates it with 
the motor direction.  You will use this to communicate the motor direction to your 
AnalogShaftEncoder objects.  The following lines provide this function:  

if (mDirectionListener != null) 
    if (power != 0) 
        mDirectionListener.updateDirection(power > 0);  

The two servos mount in opposite directions on your robot s chassis.  The sense 
of direction of rotation of the left servo s shaft is opposite of that of the right 
servo.  The following lines of code allow the sense to direction to be reversed:  

if (mReverse) 
    power = -power;  

By reversing the sense of rotation of the right servo, your program can use 
positive power values to rotate either wheel forward or negative power values to 
rotate either wheel backward.  

The setPower method handles the special case of turning the servo off when the 
power is set to zero.  It also limits the range of the power variable with the 
following code:  

if (power == 0) { 
    mServo.off(); 
    return; 
} 
else if (power > Motor.MAX_FORWARD) 
    power = Motor.MAX_FORWARD; 



Programming Your Robot to Navigate  10  

Copyright © 2005 RidgeSoft, LLC 

else if (power < Motor.MAX_REVERSE) 
    power = Motor.MAX_REVERSE; 

Implementing Navigation Classes 
As discussed previously, you can incorporate navigation into your robot s 
software by implementing a navigator class that provides the following methods:  

1. moveTo - move to a specified location, 
2. turnTo - turn to face a particular direction, 
3. go - move continuously in one direction, and  
4. stop.  

With these four methods you will be able to program your robot to navigate freely 
on a flat surface.  Since there are many ways you could implement a class that 
provides these basic navigation functions, it s a good idea to define a Navigator 
interface.  This will allow you to create interchangeable navigation classes that 
use different techniques to provide basic navigation functions.  By using an 
interface, you will help ensure the coupling between your navigation class and 
rest of your program will be loose.  This will enable you to experiment with other 
methods of navigation without having to rework large portions of your program.  It 
will even allow you to fundamentally change the mechanical design of your robot 
 for example, switch to using a four wheeled vehicle which steers like a car 

 

without having to undertake a total rewrite of your program.  

Use RoboJDE to create the Navigator interface as follows:  

public interface Navigator { 
    public void moveTo(float x, float y, boolean wait); 
    public void moveTo(float x, float y,  
                        NavigatorListener listener); 
    public void turnTo(float heading, boolean wait); 
    public void turnTo(float heading, 
                        NavigatorListener listener); 
    public void go(float heading); 
    public void stop(); 
}  

One variation of the moveTo and rotateTo methods in the Navigator interface 
provides a wait argument.  This argument indicates whether the method should 
return immediately or wait for the operation to complete.  The second variation 
allows for the methods to return immediately and later notify to a 
NavigatorListener when the operation completes or is cancelled.    

Use RoboJDE to create the NavigatorListener interface using the following code:  

public interface NavigatorListener { 
    public void navigationOperationTerminated( 
                                    boolean completed); 
} 



Programming Your Robot to Navigate  11  

Copyright © 2005 RidgeSoft, LLC  

The navigationOperationTerminated method of the listener will be called when 
the navigation operation completes or is cancelled.  The completed argument will 
be true if the operation completed or false if the operation was cancelled. 

Implementing a Differential Drive Robot Navigator Class 
You must take into account the mechanics of your robot when you design your 
navigator.  The mechanical design determines how your navigator steers your 
robot.  Designing a navigator for a robot that has four wheels and steers like a 
car is significantly different from designing a navigator for a differential drive 
robot.  Fortunately, the Navigator interface isn t tied to one specific mechanical 
design or another.  It is generic and defines methods that are equally relevant to 
navigating robots that use significantly different mechanical designs.    

Since your IntelliBrain-Bot robot is based on the very common differential drive 
design, it is preferable to implement a navigator that is suitable to any differential 
drive robot rather than restrict it to just your IntelliBrain-Bot robot.  

Use RoboJDE to create a DifferentialDriveNavigator class.  This class should 
extend the Thread class and implement the Navigator interface, as follows:  

public class DifferentialDriveNavigator extends Thread 
                                        implements Navigator { 
}  

Your navigator needs to support four states:  1) moving to a particular point, 2) 
rotating to face a certain direction, 3) going straight ahead and 4) stopped.  Your 
navigator will also need to repeatedly execute the navigation calculations, 
allowing it to make frequent adjustments required to keep it on course.  The 
following code accomplishes these things:   

public void run() { 
    try { 
        while (true) { 
            switch (mState) { 
            case MOVE_TO: 
                goToPoint(); 
                break; 
            case GO: 
                goHeading(); 
                break; 
            case ROTATE: 
                doRotate(); 
                break; 
            default:    // stopped 
                break; 
            } 
            Thread.sleep(mPeriod); 
        } 
    } 
    catch (Throwable t) { 



Programming Your Robot to Navigate  12  

Copyright © 2005 RidgeSoft, LLC 

        t.printStackTrace(); 
    } 
}  

Now you have defined the high-level operation of your navigator.  Next, you will 
need to implement the details by creating the goToPoint, goHeading and 
doRotate methods. 

Going Straight Ahead with Proportional Control 
The function of the goHeading method is quite simple.  It needs to check the 
current heading and adjust the power it applies to the motors.    

Use the following code to implement the goHeading method:  

private synchronized void goHeading() { 
    Pose pose = mLocalizer.getPose(); 
    float error = mTargetHeading - pose.heading; 
    if (error > PI) 
        error -= TWO_PI; 
    else if (error < -PI) 
        error += TWO_PI; 
         
    int differential = (int)(mGain * error + 0.5f); 
         
    mLeftMotor.setPower(mDrivePower - differential); 
    mRightMotor.setPower(mDrivePower + differential); 
}  

Note, this code implements the proportional control algorithm discussed 
previously.  In addition, it incorporates checks to constrain the error to be 
between -Pi and Pi, because the largest magnitude error is Pi or -Pi, when your 
robot is heading in the opposite direction it should be heading. 

Navigating to a Specific Location 
Now that your robot has the ability to steer itself in a particular direction, it will not 
be hard to implement the goToPoint method, allowing it to navigate to a specific 
location.  Going to a specific location is a simple matter of keeping your robot 
headed toward the destination and then stopping once it arrives.   

In the previous section you solved the problem of keeping your robot headed in 
the right direction.  All you need to add are: 1) the calculation to determine the 
heading to follow from its current position to its destination and 2) a check to stop 
when your robot reaches its destination.  

Your goToPoint method must determine the heading from your robot s current 
position to its destination.  This method needs to calculate the arc tangent of 
yError / xError to determine the heading.  The RoboJDE class library provides 
the Math.atan2 method, which you can use to calculate the heading given xError 
and yError. 



Programming Your Robot to Navigate  13  

Copyright © 2005 RidgeSoft, LLC  

Once your goToPoint method updates the heading, it can rely on the goHeading 
method to do the steering.  

Finally, your goToPoint method will need to check if the sum of the absolute 
values of xError and yError is small enough to indicate your robot is in the 
proximity of its destination.  

Implement the goToPoint method as follows:  

private synchronized void goToPoint() { 
    Pose pose = mLocalizer.getPose(); 
    float xError = mDestinationX - pose.x; 
    float yError = mDestinationY - pose.y; 
         
    float absXError = (xError > 0.0f) ? xError : -xError; 
    float absYError = (yError > 0.0f) ? yError : -yError; 
    if ((absXError + absYError) < mGoToThreshold) { 
        // stop 
        mLeftMotor.setPower(Motor.STOP); 
        mRightMotor.setPower(Motor.STOP); 
        mState = STOP;  

        // notify listener the operation is complete 
        updateListener(true, null); 
             
        // signal waiting thread we are at the destination 
        notify(); 
    } 
    else { 
        // adjust heading and go that way 
        mTargetHeading = (float)Math.atan2(yError, xError); 
        goHeading();                   
    } 
} 

Rotating in Place 
The final navigation method you need to implement is doRotate.  This method s 
purpose is to rotate your robot in place.  Similar to the goToPoint method, this 
method will use data from the localizer, as well as the target heading to 
determine which direction to rotate and when to stop.   

Implement the doRotate method as follows:  

private synchronized void doRotate() { 
    Pose pose = mLocalizer.getPose(); 
    float error = mTargetHeading - pose.heading; 
    // choose the direction of rotation that results 
    // in the smallest angle 
    if (error > PI) 
        error -= TWO_PI; 
    else if (error < -PI) 



Programming Your Robot to Navigate  14  

Copyright © 2005 RidgeSoft, LLC 

        error += TWO_PI; 
    float absError = (error >= 0.0f) ? error : -error;  
   if (absError < mRotateThreshold) { 

        mLeftMotor.setPower(Motor.STOP); 
        mRightMotor.setPower(Motor.STOP); 
        mState = STOP; 
             
        // notify listener the operation is complete 
        updateListener(true, null); 
             
        // signal waiting thread we are at the destination 
        notify(); 
    } 
    else if (error > 0.0f) { 
        mLeftMotor.setPower(-mRotatePower); 
        mRightMotor.setPower(mRotatePower); 
    } 
    else { 
        mLeftMotor.setPower(mRotatePower); 
        mRightMotor.setPower(-mRotatePower);             
    } 
} 

Coordinating Threads 
You ve kept your control logic simple and avoided undue coupling between the 
navigator and other components by using a dedicated thread to execute the 
navigation code.  This enables your navigator to pilot your robot without awkward 
consideration for your robot s other tasks, such as sampling sensors.    

If you were to implement your entire program using a single thread, your 
navigator would need to include logic to take into consideration the priority and 
timing constraints of other tasks.  For example, you would need to consider if the 
arc tangent calculation takes so much time that it could cause your wheel 
encoder to miss counts.  This issue is easy to address with multi-threading; you 
simply give the wheel encoder threads a higher priority than the navigator thread. 
Then the wheel encoder threads will preempt the navigator thread when they are 
ready to run.  This moves the scheduling burden to the underlying RoboJDE 
virtual machine  simplifying your software.  The virtual machine will 
automatically take care of preempting the navigator thread when a wheel 
encoder thread needs to take a quick peek at its sensor.  

Multi-threading helps simplify scheduling, but in order for it to work properly, you 
must consider the interaction between threads.  Your main thread will provide 
high-level control of your robot and rely on your navigator to carry out specific 
operations to accomplish the commands issued via the go, moveTo, turnTo and 
stop methods.  These are just simple methods that set the goal of the navigator.  
The run method carries out these operations.  You can implement the moveTo 
method as follows:  

private synchronized void moveTo(float x, float y, boolean wait, 
                                 NavigatorListener listener) { 



Programming Your Robot to Navigate  15  

Copyright © 2005 RidgeSoft, LLC  

   updateListener(false, listener); 
    mDestinationX = x; 
    mDestinationY = y; 
    mState = MOVE_TO; 
    if (wait) { 
        try { 
            wait(); 
        } 
        catch (InterruptedException e) {} 
    } 
}  

Your program will call this method as necessary to give the navigator its next 
goal.  This method is called by a thread other than your navigator s thread; 
therefore, you must coordinate these threads to control access to the data they 
share.  

The variables that define the goal  mDestinationX, mDestinationY, 
mTargetHeading and mState  are accessed by the navigator thread and any 
threads that call the go, moveTo, turnTo and stop methods.  These variables 
must be changed and read as a consistent set; otherwise, the navigator thread 
could resume execution at an inopportune time and use some values from the 
new goal and other values from the old goal.  For example, the navigator might 
use mDestinationX from a new goal and mDestinationY from the previous goal. 
This would result in the navigator steering toward an unintended location, the 
combination of the new destination s x coordinate and the old destination s y 
coordinate.  This wouldn t be desirable, especially if heading toward this 
unintended destination happened to lead your robot over a cliff!  

Fortunately, Java makes it easy to solve this problem by providing the 
synchronized keyword.  Adding this keyword to a method or a block of code 

allows the virtual machine to act like a traffic cop, only allowing one thread into 
synchronized code at a time.  By adding the synchronized keyword to the 
methods:  go, moveTo, turnTo, stop, goHeading, goToPoint and doRotate you 
can ensure the shared variables will always be accessed and manipulated as a 
consistent set.  

One other thread coordination caveat you must consider is allowing a calling 
thread to wait while the navigator carries out the requested command.  This will 
allow a thread calling moveTo or turnTo to wait for the operation to complete 
before continuing to execute.  Once again, Java provides a means to do this, 
wait and notify methods.  The moveTo method makes use of the wait method.  
This tells the virtual machine the thread must wait until another thread notifies the 
virtual machine that the waiting thread can continue.  The notify method is used 
by the goToPoint and doRotate methods.  This tells the virtual machine to notify 
a waiting thread, if there is one, so it can resume execution.  

You will need to add the remaining navigation methods, which are similar to 
those already discussed: 



Programming Your Robot to Navigate  16  

Copyright © 2005 RidgeSoft, LLC  

public void moveTo(float x, float y, boolean wait) { 
    moveTo(x, y, wait, null); 
} 
     
public void moveTo(float x, float y, 
                   NavigatorListener listener) { 
    moveTo(x, y, false, listener); 
}  

public synchronized void turnTo(float heading, boolean wait, 
                                NavigatorListener listener) { 
    updateListener(false, listener); 
    mTargetHeading = normalizeAngle(heading); 
    mState = ROTATE; 
    if (wait) { 
        try { 
            wait(); 
        } 
        catch (InterruptedException e) {} 
    } 
}  

public void turnTo(float heading, boolean wait) { 
    turnTo(heading, wait, null); 
}  

public void turnTo(float heading, NavigatorListener listener) { 
    turnTo(heading, false, listener); 
} 
     
public synchronized void go(float heading) { 
    mTargetHeading = normalizeAngle(heading); 
    mState = GO; 
    updateListener(false, null); 
}  

public synchronized void stop() { 
    mLeftMotor.setPower(Motor.STOP); 
    mRightMotor.setPower(Motor.STOP); 
    mState = STOP; 
    updateListener(false, null); 
} 

     
In addition, you will need to add an import statement, member variables, a 
constructor and several utility methods.  

Import

  

import com.ridgesoft.robotics.Motor;  

Member Variables

  

private static final float PI = 3.14159f; 
private static final float TWO_PI = PI * 2.0f; 



Programming Your Robot to Navigate  17  

Copyright © 2005 RidgeSoft, LLC 

private static final float PI_OVER_2 = PI / 2.0f; 
     
private static final int STOP = 0; 
private static final int GO = 1; 
private static final int MOVE_TO = 2; 
private static final int ROTATE = 3; 
     
private Motor mLeftMotor; 
private Motor mRightMotor; 
private Localizer mLocalizer; 
private int mDrivePower; 
private int mRotatePower; 
private int mPeriod; 
private int mState; 
private float mDestinationX; 
private float mDestinationY; 
private float mTargetHeading; 
private float mGain; 
private float mGoToThreshold; 
private float mRotateThreshold; 
private NavigatorListener mListener;  

Constructor

  

public DifferentialDriveNavigator( 
            Motor leftMotor, Motor rightMotor, 
            Localizer localizer 
            int drivePower, int rotatePower, 
            float gain, 
            float goToThreshold, float rotateThreshold, 
            int threadPriority, int period) { 
    mLeftMotor = leftMotor; 
    mRightMotor = rightMotor; 
    mLocalizer = localizer; 
    mDrivePower = drivePower; 
    mRotatePower = rotatePower; 
    mGain = gain; 
    mGoToThreshold = goToThreshold; 
    mRotateThreshold = rotateThreshold; 
    mPeriod = period; 
    mState = STOP; 
    mListener = null; 
    setPriority(threadPriority); 
    setDaemon(true); 
    start(); 
}  

Utility Methods

  

private void updateListener(boolean completed, 
                            NavigatorListener newListener) { 
    if (mListener != null) 
        mListener.navigationOperationTerminated(completed); 
      
    mListener = newListener; 



Programming Your Robot to Navigate  18  

Copyright © 2005 RidgeSoft, LLC 

}  

private float normalizeAngle(float angle) { 
    while (angle < -PI) 
        angle += TWO_PI; 
    while (angle > PI) 
        angle -= TWO_PI; 
    return angle; 
} 

Integrating Navigation Classes into Your Program 
You have implemented all of the classes your robot will need to navigate. All that 
remains to be done is integrating them into your program and writing a few test 
functions; then you can give your navigator a try. 

Constructing ContinuousRotationServo Objects 
Picking up where you left off with your MyBot program from the Enabling Your 
Robot to Keep Track of its Position tutorial, your next step is to add a 
ContinuousRotationServo class for each servo.  This will create a façade around 
each servo enabling your navigator to interface to the servos as if they were 
conventional motors.  Add the following code to the MyBot class just after the 
construction of the OdometricLocalizer class:  

ContinuousRotationServo leftMotor = 
            new ContinuousRotationServo(leftServo, false, 14, 
            (DirectionListener)leftEncoder); 
ContinuousRotationServo rightMotor =  
            new ContinuousRotationServo(rightServo, true, 14, 
            (DirectionListener)rightEncoder);  

The second argument to your ContinuousRotationServo class is a Boolean value 
that indicates whether the sense of direction should be reversed.  You must 
reverse the sense of direction for the right servo.  The third argument is the 
effective range of servo position commands, which was determined previously to 
be 14. 

Constructing a Navigator Object 
Add the following lines of code to the main method to construct a 
DifferentialDriveNavigator object:  

Navigator navigator = new DifferentialDriveNavigator( 
                                    leftMotor, rightMotor, 
                                    localizer, 
                                    8, 6, 25.0f, 0.5f, 0.08f, 
                                    Thread.MAX_PRIORITY - 2, 50);  

The arguments following the localizer argument control the behavior of the 
navigator.  The first argument is the average power the navigator will use when 
moving forward.  The next argument is the power the navigator will use when 



Programming Your Robot to Navigate  19  

Copyright © 2005 RidgeSoft, LLC 

rotating in place. This is followed by the gain, which controls how aggressively 
the navigator responds to heading errors.  The next two arguments define the 
thresholds which control how close is close enough to the goal when moving 
forward and rotating in place.  

Following the control constants is the thread priority argument.  It is a good idea 
to set the priority for the navigator slightly lower than the priority for the shaft 
encoders, which are highest priority, and the localizer, which is next to highest 
priority.  The navigator relies on the shaft encoders and the localizer to perform 
its function.  It doesn t make sense to give it a higher priority than other threads it 
depends upon.  Furthermore, the encoder objects will miss count if their polling of 
the sensors gets delayed for too long.  Polling the encoder sensors is not a large 
task, but it does have timing constraints that must be met in order for the 
encoders to function properly.  Therefore, it makes sense to give the encoders 
the highest priority.  

The final argument to the constructor specifies the update period in milliseconds.  
Fifty milliseconds is a reasonable value to use. 

Testing Your Navigator 
You can test your navigator by implementing a few small test classes that use 
the navigator to maneuver your robot in specific patterns.  Creating the following 
four test classes will help verify the function of your navigator:  

1) NavigateForward  move your robot straight ahead for a specified 
distance 

2) Rotate  rotate your robot 180 degrees in place 
3) NavigateSquare  move your robot in a square pattern 
4) NavigateFigureEight  moves your robot in an figure eight pattern  

NavigateForward

  

This class will manuever your robot straight ahead for the distance specified in 
the constructor.  

public class NavigateForward implements Runnable { 
    private Navigator mNavigator; 
    private float mDistance; 
     
    public NavigateForward(Navigator navigator, float distance) { 
        mNavigator = navigator; 
        mDistance = distance; 
    } 
     
    public void run() { 
        mNavigator.moveTo(mDistance, 0.0f, true);         
    } 
     
    public String toString() { 



Programming Your Robot to Navigate  20  

Copyright © 2005 RidgeSoft, LLC 

        return "Navigate Forward"; 
    } 
}  

Rotate

  
This class will rotate your robot 180 degrees.  

public class Rotate implements Runnable { 
    private Navigator mNavigator; 
     
    public Rotate(Navigator navigator) { 
        mNavigator = navigator; 
    } 
     
    public void run() { 
        mNavigator.turnTo((float)Math.toRadians(180), true); 
    } 
     
    public String toString() { 
        return "Rotate"; 
    } 
}  

NavigateSquare

  

This class will maneuver your robot in a square according to the size specified in 
the constructor.  

public class NavigateSquare implements Runnable { 
    private Navigator mNavigator; 
    private float mSize;  

    public NavigateSquare(Navigator navigator, float size) { 
        mNavigator = navigator; 
        mSize = size; 
    } 
     
    public void run() { 
        mNavigator.moveTo(mSize, 0.0f, true); 
        mNavigator.moveTo(mSize, -mSize, true); 
        mNavigator.moveTo(0.0f, -mSize, true); 
        mNavigator.moveTo(0.0f, 0.0f, true); 
        mNavigator.turnTo(0.0f, true); 
    } 
     
    public String toString() { 
        return "Square"; 
    } 
}  



Programming Your Robot to Navigate  21  

Copyright © 2005 RidgeSoft, LLC 

NavigateFigureEight

  
This class will navigate your robot in a figure-eight pattern.  

public class NavigateFigureEight implements Runnable { 
    private Navigator mNavigator; 
    private float mHeight; 
    private float mWidth;  

    public NavigateFigureEight(Navigator navigator, 
                                float height, float width) { 
        mNavigator = navigator; 
        mHeight = height; 
        mWidth = width; 
    } 
     
    public void run() { 
        mNavigator.moveTo(mHeight, mWidth, true); 
        mNavigator.moveTo(mHeight, 0.0f, true); 
        mNavigator.moveTo(0.0f, mWidth, true); 
        mNavigator.moveTo(0.0f, 0.0f, true); 
        mNavigator.turnTo(0.0f, true); 
    } 
     
    public String toString() { 
        return "Figure Eight"; 
    } 
}  

Extend the list of selectable functions in your MyBot class by adding the following 
code:  

new NavigateSquare(navigator, 16.0f), 
new NavigateFigureEight(navigator, 48.0f, 32.0f), 
new Rotate(navigator), 
new NavigateForward(navigator, 100.0f), 

Testing 
You can now test out your navigation software by experimenting with the four 
classes you just created.  When you choose the Navigate Forward function 
your robot should drive straight ahead for 100 inches.  When you choose the 
Rotate function your robot should rotate in place 180 degrees.  Choosing the 
Navigate Square function should cause your robot to drive in a square which is 

16 inches on a side.  Finally, the Figure Eight function should cause your robot 
to navigate a shape that is roughly a figure eight.  

You should find that your robot is reasonably effective at navigating these 
preprogrammed patterns.  However, you will also find the precision of your 
robot s navigation is far from perfect!  Table 1 lists a number of the most 
significant sources of error that affect the precision with which our robot can 
navigate. 



Programming Your Robot to Navigate  22  

Copyright © 2005 RidgeSoft, LLC  

Table 1  Major Sources of Error 

Error Sources Description 
Calibration The accuracy of the wheel diameter and wheel base 

measurements provided to the localizer affect its 
accuracy. 

Encoder Quantization The accuracy to which the wheel encoders are able 
to measure the position of the wheels directly affects 
the accuracy of the localizer.  Using wheel encoders 
that provide more counts per revolution, such as the 
WheelWatcher WW-01 encoder, will reduce the 
error due to encoder quantization. 

Wheel Slippage Any slippage of the wheels will result in localization 
errors. 

Localization Technique The dead reckoning localization method you have 
used is based on self-centric encoder 
measurements.  This results in accumulation of 
error because the robot has no fixed external 
reference from which it could recalibrate its position.  
Incorporating external references such as 
landmarks, the Earth s magnetic field (compass) or 
satellites (GPS) would help improve the accuracy of 
the localizer. 

Conclusion 
By completing this tutorial you have implemented two new software components, 
a Motor façade for continuous rotation servos and a Navigator for a differential 
drive robot.  These are both generic classes that you can reuse for other robot 
projects.  They are not specific to just the IntelliBrain-Bot robot.  By using the 
Motor and Navigator interfaces, as well as multi-threading, you have been able to 
minimize the coupling of these components to other software, hardware and 
electronics components, making it easy to reuse them for other robot projects.  

You also discovered that your robot is less than perfect.  This is not just a 
shortcoming of your robot; imperfection is a fundamental issue all roboticists 
contend with.  While it is tempting to try to produce a robot that is error free, no 
matter how hard you try, you can only reduce the built-in errors, you can t 
eliminate them, and you can t do anything to prevent unpredictable random 
errors.  Creating strategies to deal with the real world limitations of robots will 
provide robotics researchers an assortment of interesting problems to solve that 
will keep them busy for many years to come! 



Programming Your Robot to Navigate  23  

Copyright © 2005 RidgeSoft, LLC 

Exercises 
1. Experiment with each of the four navigation test functions you created.  

Does your robot navigate the pattern you expect it to navigate?  Does your 
robot navigate the pattern perfectly each time? 

2. Using the Navigate Forward function, measure the average distance 
your robot moves over several runs.  Calibrate the value of the wheel 
diameter such that your robot moves an average of 100 inches over 
several runs. 

3. Using the Rotate function, calibrate the track width value such that your 
robot is as accurate as possible at rotating an average of 180 degrees 
over several runs. 

4. Modify your program so your robot travels 50 inches instead of 100 inches 
forward when you choose the Navigate Forward function. 

5. Modify your program so your robot travels in a square which is 50 inches 
on a side when you choose the Navigate Square function.  Is your robot 
more able to get back to its starting point when the square is larger or 
smaller?  Why? 

6. Program your robot to navigate a new shape that you choose. 
7. Try increasing and decreasing the stop thresholds your navigator uses.  

How does increasing the stop threshold affect your robot s navigation?  
How does decreasing the stop threshold affect your robot s navigation? 

8. Change the drive power.  How does this affect your robot s navigation? 
9. Change the rotate power.  How does this affect your robot s navigation? 
10. Double the gain constant.  How does this affect your robot s navigation? 
11. Halve the gain constant.  How does this affect your robot s navigation? 
12. Use the TestNavigatorResponse class in Appendix A to collect data and 

create a chart similar to Figure 4.  Hint:  Add an instance of this class as 
another function in the list of functions in your MyBot class. 

13. Use the TestServoResponse class in Appendix B class to collect data and 
create a chart similar to Figure 5.  Hint:  Add an instance of this class as 
another function in the list of functions in your MyBot class.  



Programming Your Robot to Navigate  24  

Copyright © 2005 RidgeSoft, LLC 

Appendix A  TestNavigatorResponse Class  

import com.ridgesoft.robotics.PushButton;  

public class TestNavigatorResponse implements Runnable { 
    Navigator mNavigator; 
    Localizer mLocalizer; 
    PushButton mButton;   

    public TestNavigatorResponse(Navigator navigator, 
                                    Localizer localizer, 
                                    PushButton button) { 
        mNavigator = navigator; 
        mLocalizer = localizer; 
        mButton = button; 
    }   

    public void run() { 
        float desiredHeading = 0.0f; 
        mNavigator.go(desiredHeading); 
        int servoSetting = 0; 
        float[] target = new float[50]; 
        float[] heading = new float[50]; 
        long nextTime = System.currentTimeMillis(); 
        for(int i = 0; i < heading.length; ++i) { 
            nextTime += 125; 
             
            try { 
                Thread.sleep( 
                    nextTime - System.currentTimeMillis()); 
            } catch (InterruptedException e) {} 
            Pose pose = mLocalizer.getPose(); 
            heading[i] = pose.heading; 
            target[i] = desiredHeading; 
            if (i == 20) { 
                desiredHeading = (float)Math.PI / 2.0f; 
                mNavigator.go(desiredHeading); 
            } 
        } 
        mNavigator.stop();  

        while (!mButton.isPressed()); 
        for (int i = 0; i < target.length; ++i) { 
            System.out.println(Integer.toString(i * 125) + '\t' + 
                                target[i] + '\t' + heading[i]); 
        } 
    }  

    public String toString() { 
        return "Nav. Response"; 
    } 
} 



Programming Your Robot to Navigate  25  

Copyright © 2005 RidgeSoft, LLC 

Appendix B  TestServoResponse Class  

import com.ridgesoft.robotics.PushButton; 
import com.ridgesoft.robotics.Servo; 
import com.ridgesoft.robotics.ShaftEncoder;  

public class TestServoResponse implements Runnable { 
    private ShaftEncoder mLeftEncoder; 
    private ShaftEncoder mRightEncoder; 
    private Servo mLeftServo; 
    private Servo mRightServo; 
    private PushButton mButton; 
     
    public TestServoResponse(Servo leftServo, 
                                Servo rightServo, 
                                ShaftEncoder leftEncoder, 
                                ShaftEncoder rightEncoder, 
                                PushButton button) { 
        mLeftServo = leftServo; 
        mRightServo = rightServo; 
        mLeftEncoder = leftEncoder; 
        mRightEncoder = rightEncoder; 
        mButton = button; 
    } 
     
    public void run() { 
        int servoSetting = 0; 
        int leftPrevious = mLeftEncoder.getCounts(); 
        int rightPrevious = mRightEncoder.getCounts(); 
        int[] leftSamples = new int[20]; 
        int[] rightSamples = new int[20]; 
        int[] powerSamples = new int[20]; 
        long nextTime = System.currentTimeMillis(); 
        for(int i = 0; i < powerSamples.length; ++i) { 
            nextTime += 1000; 
            try { 
                Thread.sleep( 
                    nextTime - System.currentTimeMillis()); 
            } catch (InterruptedException e) {} 
            int leftCounts = mLeftEncoder.getCounts(); 
            int rightCounts = mRightEncoder.getCounts(); 
           powerSamples[i] = servoSetting; 
           leftSamples[i] = leftCounts - leftPrevious; 
           leftPrevious = leftCounts; 
           rightSamples[i] = rightCounts - rightPrevious; 
           rightPrevious = rightCounts; 
            servoSetting += 1; 
            mLeftServo.setPosition(50 + servoSetting); 
            mRightServo.setPosition(50 - servoSetting); 
        } 
        mLeftServo.setPosition(50); 
        mRightServo.setPosition(50); 
        while (!mButton.isPressed()); 
        for (int i = 0; i < powerSamples.length; ++i) { 
            System.out.println(Integer.toString(i) + 
                                  '\t' + powerSamples[i] + 



Programming Your Robot to Navigate  26  

Copyright © 2005 RidgeSoft, LLC 

                                  '\t' + leftSamples[i] + 
                                  '\t' + rightSamples[i]); 
        } 
    }  

    public String toString() { 
        return "Servo Response"; 
    } 
}                                               

Copyright © 2005 by RidgeSoft, LLC.  All rights reserved.  

RidgeSoft , RoboJDE and IntelliBrain are trademarks of RidgeSoft, LLC.  

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States 
and other countries. All other brand or product names are trademarks of their respective owners.  

RidgeSoft, LLC 
PO Box 482 
Pleasanton, CA  94566 
www.ridgesoft.com

 


