
Java™-enabled Robotics Primer 

Overview 
This primer provides a very brief overview of the Java programming language.  If 
you are familiar with programming, particularly in C or C++, but have not 
programmed using Java this primer will help you become familiar with Java.  If 
you haven’t done much programming before you may want to purchase one of 
the many available books to help you master Java programming.  

The SimpleBot and SimpleBotPlus examples included with RoboJDE™ are 
used to illustrate basic Java programming concepts applied to robotics. 

Classes and Objects 
Two fundamental constructs in object oriented programming and the Java 
language are the class and the object.  

A class is a type of thing.  A class is the software implementation of the thing.  
When you write a Java program, you are creating classes.  SimpleBot and 
SimpleBotPlus are examples of classes.  These classes represent a robot 
controller.  Their implementation is the logic that controls the robot.  Each class is 
usually contained in its own Java source file, for example, SimpleBot.java.  
Classes may be implemented inside of other classes (Inner Classes).  However, 
it is convenient to initially think of a class as the software implemented in one 
Java source file.  

An object is an instance of a class.  Objects contain the run-time data for a 
specific instance of a class.  Objects are created and destroyed as a Java 
program executes.  In the SimpleBot example the class uses two Motor 
objects to control the robot, one for each of the robot’s wheels.  These objects 
behave similarly but refer to different motor ports on the robot controller board.  
Each of these Motor objects consists of a few bytes of memory containing data 
relevant to the object, including its class and the port it uses.  

New objects are created by executing the constructor method.  This is done by 
using the new keyword.  In SimpleBot, the main method creates a SimpleBot 
object by using the statement:  

SimpleBot simpleBot = new SimpleBot(…) 

Member Variables and Methods 
Classes define member variables and methods.  Member variables contain data 
relevant to a particular object.  Methods are functions that are relevant to the 
class and its objects.   



Java-enabled Robotics Primer  2 

Copyright © 2003 RidgeSoft, LLC 

Frequently member variables are kept “private” to the class so the only way for 
methods in other classes to interact with an object is through the object’s 
methods.  This keeps code outside of the class from knowing to many details 
about the inner workings of the class, making it easier to make changes that 
don’t ripple throughout the code.  In the SimpleBot class, the member variables 
which keep track of the Motor objects – mLeftMotor and mRightMotor – are 
private and not accessible to other classes.  The only way for other classes to 
interact with a SimpleBot object’s Motor objects is through its methods – 
forward(), backward(), stop() and go().   

Any program is much easier to maintain if changes and enhancements can be 
isolated to a small portion of the program.  By hiding the internal structure of a 
class, changes to the inner workings of a class to extend it or add new features 
are isolated to the class itself.  So long as the class’s methods continue to do the 
same thing, other classes will not need to change.  Other classes will be unaware 
of the internal structure of the modified class so they will not need to change.  
Additionally, by only allowing an object’s methods to modify its member 
variables, it isn’t possible for other parts of the program to improperly modify an 
object due to a programming error.  Because all modifications are controlled by 
an object’s own methods, it is in complete control of how and when it can be 
modified.  

You will find your programs are easier to debug and maintain if you declare 
member variables private. 

Static Methods and Member Variables 
Methods and member variables are declared static if they are per-class rather 
than per-object.  

A static member variable is a single variable per-class shared by all objects of 
the class.  If a member variable is not static, it is per-object.  Each object has its 
own instance of each non-static member variable.  Changes to one object’s 
member variables are independent of all other objects.  

Methods that operate only on static member variables may be declared static.  
Static methods are related to a class but do not access object instance specific 
member variables.  The main() methods in SimpleBot and SimpleBotPlus 
are static methods.  These methods can be executed without being 
associated with an object. 

References and “this” 
Whenever an object’s methods or member variables are accessed, a reference 
to the object tells the Java virtual machine which object to use.  In the 
SimpleBot example, the forward() method executes the 
setMotorPower() method for the left motor by using the statement: 



Java-enabled Robotics Primer  3 

Copyright © 2003 RidgeSoft, LLC 

mLeftMotor.setPower(Motor.MAX_FORWARD);  

The member variable mLeftMotor is a reference to a Motor object.  

When executing a non-static method, the reference is implicitly passed to the 
method and becomes the this reference while the method executes.  When a 
method accesses member variables or other methods without specifying a 
reference, this is used implicitly.  In SimpleBot.go(), the methods 
forward(), stop() and back() are not preceded by a reference, because 
this is used implicitly.  The SimpleBot.forward() method implicitly uses 
this when referring to mLeftMotor and mRightMotor.  this can be used 
explicitly, as well.   Whether used implicitly or explicitly, the result is the same.  

When an object needs to pass a reference to itself to another method, this tells 
the Java compiler to use the reference to the current object.  

There is no this reference for static methods or static member variables.  Static 
members in other classes are referred to by preceding the method or member 
with the class name.   For example, SimpleBot’s go method puts the current 
execution thread to sleep by calling the sleep() method in the Thread class 
using the statement:    

Thread.sleep(5000);  

When calling static methods in the same class, the class name can be omitted 
because the compiler will implicitly assume the method is in the same class. 

Inheritance 
Inheritance allows one class to inherit the implementation of another class.  The 
SimpleBotPlus class inherits the implementation of the SimpleBot class by 
declaring it extends SimpleBot using the statement:  

public class SimpleBotPlus extends SimpleBot  

SimpleBotPlus overrides the go() method in SimpleBot by declaring its own 
go method to implement a different robot behavior.   SimpleBotPlus inherits 
the methods forward(), backward() and stop() from SimpleBot because 
they do not need to change. 

The Object Class 
The root class of all classes is the class Object.  All classes inherit from this 
class.  If a class is declared without extending another class then it is implicitly a 
subclass of Object. 



Java-enabled Robotics Primer  4 

Copyright © 2003 RidgeSoft, LLC 

Interfaces and Abstract Classes 
Interfaces specify a set of methods that define functionality that a class may 
declare it implements.  By using interfaces, dependencies between classes can 
be reduced, making your software easier to maintain and extend.  For example, 
the SimpleBot class maintains references to two objects for the left and right 
motors.  These references refer to the Motor interface, allowing the SimpleBot 
class to work with any class that implements the Motor interface.  By using the 
Motor interface the SimpleBot class is able to work with conventional motors, 
servo motors, or any class that implements the Motor interface, rather than 
being limited to only work with one type of motor.  

Abstract classes are partially implemented classes that delegate the 
implementation of certain methods to subclasses.  Since its implementation is 
incomplete, you cannot create an object of an abstract class, you must create 
objects of a subclass which completes the implementation.  For example, the 
Motor interface used by SimpleBot could have been made an abstract class 
instead of an interface.  The method setPower() would then have been 
declared abstract.  A subclass of Motor would then implement the 
setPower() method.  

Interfaces are less restrictive than abstract classes because any class can 
implement an interface.  However, subclasses can inherit methods from abstract 
class.  The methods declared by an interface are always abstract.  That is, 
interfaces do not implement methods. Interfaces only declare methods that must 
be implemented by any class that declares it implements the interface.  

Abstract classes are declared by using the abstract keyword in the class 
declaration.  For example:    

public abstract class A  

Abstract methods are declared by using the abstract keyword in the method 
declaration and not including statements which would implement the method.  
For example:   

public abstract void go();  

The following is an example of an interface:  

public interface AnInterface {  
public void go(); 

}  

A similar abstract class could be:  



Java-enabled Robotics Primer  5 

Copyright © 2003 RidgeSoft, LLC 

public abstract class AnAbstractClass {  
public abstract void go();  
public void stop() {   

…  
} 

}  

The stop() method contains an implementation that can be inherited.  The 
go() method is abstract and must be implemented by a subclass. 

Access Keywords 
The access to member variables and methods can be restricted using access 
keywords in the declaration of the member variable or method.  The following 
keywords may be used:  

 

private – member variables and methods are only accessible to the 
declaring class. 

 

no keyword – member variables and methods are only accessible to the 
declaring class and classes in the same folder (package).   Note:  Folders are 
referred to as “packages” in the Java language. 

 

protected – member variables and methods are only accessible to the 
declaring class, subclasses of the declaring class and other classes in the 
same folder. 

 

public – member variables are accessible anywhere. 

Variables 
The Java language supports the following types of variables:  

 

static member variables – per-class variables – there is only one instance of 
the variable regardless of the number of objects. 

 

member variables – per-object variables - there is one instance of the 
variable for every object of the class. 

 

local variables – declared in methods – access is limited by scope, there is 
one instance of the variable within the scope the variable is defined in.  
Generally the scope is the set of braces – {} – the variable is declared 
between, or the entire method if the variable is an argument of the method.  
Local variables are accessible from the point where they are declared to the 
end of the scope.  In SimpleBot.main(), simpleBot is a local variable 
and is only accessible in the try block it is declared in. 

Data Types 
The Java language supports the following data types:  



Java-enabled Robotics Primer  6 

Copyright © 2003 RidgeSoft, LLC 

 
boolean – a variable with a true or false value.  The values true and 
false are the only values a boolean can take on, unlike other languages 
where booleans are simply integers. 

 
char – a literal character such as ‘A’.  char variables are unsigned 16 bit 
quantities that can be cast to an int. 

 
byte – a signed 8 bit integer variable. 

 
short – a signed 16 bit integer variable. 

 

int – a signed 32 bit integer variable. 

 

long – a signed 64 bit integer variable. 

 

float – a 32 bit floating point variable. 

 

double – a 64 bit floating point variable.  Note:  RoboJDE supports the 
double type but treats it as if it were a float.  Therefore, double variables 
have the same range and precision as float variables when executing a 
program using the RoboJDE virtual machine. 

 

void – used to indicate a method does not return a value. 

 

A reference to an object.  References are declared by preceding the 
variable name with a class name.  For example, the statement   

SimpleBot simpleBot;  

declares the variable simpleBot is a reference to an object which is a 
SimpleBot class or a subclass of SimpleBot.  References may also have 
the value null, which means the reference currently refers to no object.  An 
exception is thrown if a program attempts to access a member variable or 
method using a reference that is null. 

 

Arrays of the above data types, except void.  Arrays are declared by 
following the data type by square brackets, for example,   

int[] intArray;  

Multi-dimensional arrays are declared by using multiple sets of brackets.  For 
example,    

int[][] twoDArray; 

Program Structure 
Java programs are structured in blocks of statements between braces – {} – 
similar to C and C++.  The statements in a method are enclosed by braces, as 
are the statements in a branch of a conditional statement.  If a conditional 
statement is followed by only one other statement, the braces can be omitted. 

The main() Method 
The program execution starts at the method named main in the “main class.”  In 
RoboJDE you specify which class is the main class in the Project Properties 
dialog. 



Java-enabled Robotics Primer  7 

Copyright © 2003 RidgeSoft, LLC 

Comments 
The Java language supports two methods of denoting comments:  

 
// - end-of-line comment.  Everything after the // to the end-of-line is 
ignored by the compiler. 

 
/* */ - block comment.  Everything between /* and */ is ignored by the 
compiler. 

Operators 
Java supports the operators in Table 1. 

Table 1 - Java Operators 

Operators Description 
+  - addition and subtraction 
*  /  % multiplication, division and modulo division 
++  -- increment or decrement the operand – placed left of the operand 

for pre-increment/decrement (++x)  and right of the operand for 
post-increment/decrement (x++). 

==  != equality and inequality – when applied to references equality is 
true if the compared references refer to the same object 
instance.  Use the equals() method to check for equality of 
object values. 

>= <= >  <  
instanceof 

greater than or equal to, less than or equal to, greater than, less 
than and test if an object is an instance of a particular class 

&&  ||  ! Boolean AND, OR and NOT 
(type) cast operand – convert  the type of the operand to the type 

specified between the parentheses.  
<<  >>  
>>> 

left shift, arithmetic right shift and logical right shift 

&  |  ^  ~ bitwise AND, OR, exclusive OR and NOT 
?  : conditional operator – if the value to the left of the ? is true 

evaluate the expression to the left of the : otherwise evaluate 
the expression to the right of the colon.  For example, the 
following statement can be used to find the maximum of x and y:   

max = (x >= y) ? x : y 
=  *=  /=  
%= +=  -=  
<<=  >>=  
>>>=  &=  
^=  |= 

assignment operators – operators other than = perform the 
operation denoted to the left of the equals sign then assign the 
result. 

Conditional Statements 
The Java language provides the following conditional statements:  



Java-enabled Robotics Primer  8 

Copyright © 2003 RidgeSoft, LLC 

 
if (expression) - if  the expression is true, the block of statements that 
follows is executed. 

 
else if (expression) - if the expression is true and the preceding if and 
else if expressions are false, the block of statements that follows is 
executed. 

 
else – if the preceding if and else if expressions are false, the block 
of statements that follows is executed. 

 

switch (integer) - branch to the case statement corresponding to the value 
of the integer variable or if no case with the corresponding value exists 
branch to the default keyword.  If the default keyword is not present, 
branch to the end of the block. 

 

case value: - identifies the point to branch to if the value matches that of the 
integer used in the switch statement. 

 

default – identifies the point to branch to if the value in the switch 
statement does not correspond to any of the cases. 

Loops 
The Java language supports the following types of loops:  

 

for – iterate the loop a specified number of times.   
For example:    

for (int i = 0; i < 10; i++) { … }  

repeats the statements in the braces 10 times. 

 

while (expression) - iterate the loop while the expression is true. 
For example:    

while (i < 10) { … }  

 

do – similar to while loop but always executes the block of code at least once. 
For example:   

do { … } while (i < 10); 

Exception Handling 
The Java language supports exception handling, which allows for abruptly 
transferring control when an abnormal condition occurs.  When a condition 
occurs that makes it necessary to discontinue the current program flow, such as 
a null reference or an out-of-bounds array index, an exception results and an 
object that is a subclass of Throwable is thrown.  Control is then transferred to 
the first enclosing catch statement for which the thrown class is an instance of 
the class specified in the catch statement.  If the current method does not catch 
the exception, then the calling method is checked, and so on up through the 
chain of calling methods until a suitable catch statement is found.  If no suitable 



Java-enabled Robotics Primer  9 

Copyright © 2003 RidgeSoft, LLC 

catch statement is found, the current thread silently exits.  The structure of a try-
catch-finally block is as follows:  

try {  
… 

} 
catch (Throwable t) {  

… 
} 
finally {  

… 
}  

 

try – denotes the start of a block of code where certain exceptions can be 
caught by following catch statements. 

 

catch  (throwable-class) – catches any thrown exceptions of the specified 
class or any of its subclasses.  A single try block may be followed by several 
catch blocks.  When an exception occurs the catch statements are checked 
in order.  The first catch statement for which the thrown object is an instance 
of the listed class determines the catch block that is executed. 

 

finally – denotes a block of code that should always execute regardless of 
whether an exception occurs or whether an exception is caught. 

Transfer of Control 
The following statements transfer execution out of the current block of 
statements.  

 

break – branch out of the enclosing switch statement or enclosing loop. 

 

continue – branch to the beginning of the enclosing loop and start the next 
iteration. 

 

return value – return from a method and return the specified value.  No 
value can be returned if the method declaration states it returns void.  The 
return statement can be omitted at the end of a method whose return type is 
void. 

 

throw throwable-object – transfer control to the first suitable catch 
statement passing the specified object to the catch block. 
For example:   

throw new Exception(“Test exception”); 

Casting and “instanceof” 
The Java language is strongly typed and requires that any reference be cast to 
the desired class type rather than assuming an object is the desired class.  The 
cast operation allows a super class reference to be cast to a subclass of the 
super class.  If the reference refers to a class that is not an instance of the 



Java-enabled Robotics Primer  10 

Copyright © 2003 RidgeSoft, LLC 

specified class a ClassCastException is thrown.  The instanceof operator 
allows for testing the class of an object without throwing an exception.  

 
(type) – casting a reference or data type to the type specified.   
For example:     

Motor motor = (Motor)new ContinuousRotationServo(servo);  

 

instanceof – logical operation which is true if the object to the left is an 
instance of the class to the right.  For example:   

if (motor instanceof HandyBoardMotor) {…} 

Packages and Imports 
Libraries of classes are organized as “packages.”  A package is all the classes in 
a single file folder.  The base Java classes are in the package java.lang.  For 
the programs you develop using RoboJDE all of the classes in one project folder 
are in the default package.  

When a file refers to a class or interface from another package the class must be 
imported using the import statement.  For example,   

import com.ridgesoft.robotics.Motor  

could be used to import the Motor class.  All classes in a package can be 
imported by using * instead of a particular class name in the import statement.  
In the SimpleBot example, the statement:  

com.ridgesoft.robotics.*  

imports all classes in the robotics package.  


