
                     

www.ridgesoft.com

    

Revision 1.1 



Creating Shaft Encoders for Wheel Position Sensing  1  

Copyright © 2005 RidgeSoft, LLC 

Introduction 
The tutorial Programming Your Robot to Perform Basic Maneuvers demonstrated 
how you can use timed sequences of commands to program your robot to 
perform simple maneuvers.  With timing-based control, your robot lacks a means 
to recognize and compensate for varying operating conditions.  As a result, its 
performance can be significantly affected by changes in battery voltage, friction 
and other factors.    

By adding sensors to provide feedback, you can enable your robot to perform 
more consistently.  Instead of using pre-programmed predictions, your program 
will be able to control your robot according to measurements of its actual 
performance.    

In this tutorial you will use a Fairchild QRB1134 infrared 
photo-reflector to sense the position of each of your 
robot s wheels.  By mounting each sensor adjacent to a 
wheel, as shown in Figure 1, it will provide an input signal 
to your program.  Your program will use this signal to 
implement a shaft encoder, which will keep track of the 
position of the wheel.   

Although tracking the position of your robot s wheels 
may not seem too exciting, doing this will allow your 
robot to eventually keep track of its location.  It will also allow your robot to 
navigate from place to place.  

As you complete this tutorial you will learn how to sample input from an analog 
sensor, such as the QRB1134 infrared photo-reflector.  You will also learn about 
shaft encoding and you will create an encoder class that uses this sensor to 
monitor the position of an adjacent wheel. 

Before You Get Started 
This tutorial builds on topics covered in the following tutorials:  

Creating Your First IntelliBrain Program 
Programming Your Robot to Perform Basic Maneuvers 
Creating a User Interface for Your Robot  

If you are not already familiar with the concepts covered in these tutorials, you 
should complete them first before attempting this tutorial.  This and other tutorials 
are available from the RidgeSoft web site, www.ridgesoft.com.   

The programming steps in this tutorial build on the MyBot program developed in 
the Creating a User Interface for Your Robot tutorial.  

Figure 1  Wheel 
Position Sensor  



Creating Shaft Encoders for Wheel Position Sensing  2  

Copyright © 2005 RidgeSoft, LLC 

You will need an IntelliBrain-Bot educational robot kit to complete this tutorial. 

Theory of Operation 
The IntelliBrain-Bot educational robot comes with plastic wheels, as shown in 
Figure 1.  Each wheel has eight spokes separated by eight oblong holes.  These 
spokes and holes are fundamental to sensing movement of the wheel.  By using 
an infrared photo-reflector sensor, your program can detect whether a spoke or a 
hole is in front of the sensor.  By checking the sensor frequently, your program 
can check for movement of the wheel which will enable it to track the position of 
the wheel.  This technique is known as shaft encoding because it relies on a 
sensor signal that encodes the angular position of a shaft, in this case the axle 
the wheel is mounted on.  

You are probably wondering how your program can detect the spokes and holes 
in the wheels.  A simple way to do this is to use an infrared photo-reflector 
sensor, such as the Fairchild QRB1134.  These sensors come with the 
IntelliBrain-Bot kit.  These are similar to the sensors that are used to turn faucets 
on and off automatically in public restrooms.    

An infrared photo-reflector sensor consists of an infrared emitter and detector 
pair.  The emitter emits infrared light.  The detector detects infrared light.  The 
detector has an output signal whose voltage varies depending on the intensity of 
the infrared light striking the detector.  When the sensor is adjacent to a solid 
surface  for example, a spoke  infrared light from the emitter will reflect back 
on to the detector, as shown in the upper portion of Figure 2.  The output voltage 
of the detector will be low in this case.   

Figure 2 

 

Fairchild QRB1134 Photo-reflector Sensor Operation 

When there is no surface adjacent to the sensor  for example, the sensor is 
adjacent to a hole in the wheel 

 

infrared light from the emitter will not be 
reflected on to the detector.  In this case, the output voltage of the detector will 
be high.  This situation is depicted in the lower portion of Figure 2.  

Output 
Voltage 

Low 

High 



Creating Shaft Encoders for Wheel Position Sensing  3  

Copyright © 2005 RidgeSoft, LLC 

By mounting a sensor adjacent to each wheel, as shown in Figure 1, your 
program will be able to use the output signal from the detector to sense whether 
a spoke or hole is adjacent to the sensor at any point in time.  By checking the 
signal frequently your program can sense movement of the wheel. 

Working with Analog Sensors 
Now that you are familiar with how the photo-reflector sensors work and how you 
will be using them, you can extend the MyBot program from the Creating a User 
Interface for Your Robot tutorial to begin working with the sensors.  The user 
interface foundation classes you built in that tutorial will come in handy for 
displaying sensor readings.  

If you haven t already mounted the photo-reflector sensors on your IntelliBrain-
Bot, you should do so now.  Please refer to the IntelliBrain-Bot Assembly Guide 
(available from www.ridgesoft.com) for instructions on how to attach these 
sensors. 

Sampling Analog Inputs 
You will need to use the IntelliBrain robotics controller s built-in analog-to-digital 
(A-to-D) converter to sample the analog signal from the sensor.  Fortunately, 
the RoboJDE software that comes with the IntelliBrain-Bot kit makes using the A-
to-D converter very easy.  All you have to do is invoke the sample method on the 
port object for the port to which your sensor connects.  

You can get the port object using the getAnalogInput method of the IntelliBrain 
class.  To obtain the analog input objects for the left and right wheel sensors, 
which you should have attached to analog ports 4 and 5, respectively, add the 
following lines to the main method of the MyBot class:  

AnalogInput leftWheelInput = IntelliBrain.getAnalogInput(4); 
AnalogInput rightWheelInput = IntelliBrain.getAnalogInput(5);  

A convenient place to add these lines is right after the existing line to obtain the 
stopButton object.  You will also need to add the following import statement near 
the beginning of the MyBot class:  

import com.ridgesoft.robotics.AnalogInput;  

You can now sample the A-to-D converter for either port by adding a line to your 
program to invoke the port s sample method.  For example, you could use the 
following line to sample the left wheel sensor input:  

int leftWheelSensorValue = leftWheelInput.sample();  

However, don t add this to your program quite yet. 



Creating Shaft Encoders for Wheel Position Sensing  4  

Copyright © 2005 RidgeSoft, LLC 

Testing the Sensors 
Whenever you add a sensor to your robot, it is a good idea to take the time to 
test the sensor.  This will enable you to verify the sensor is connected and 
functioning properly.  It will also allow you to experiment directly with the sensor 
to better understand how it works.   

You can test both sensors by adding another screen to the user interface to 
display values sampled from the sensors.  To do this, create a new class named 
WheelSensorScreen using the following code:  

import com.ridgesoft.io.Display; 
import com.ridgesoft.robotics.AnalogInput;  

public class WheelSensorScreen implements Screen { 
    private AnalogInput mLeftWheelInput; 
    private AnalogInput mRightWheelInput;  

    public WheelSensorScreen(AnalogInput leftWheelInput, 
                             AnalogInput rightWheelInput) { 
        mLeftWheelInput = leftWheelInput; 
        mRightWheelInput = rightWheelInput; 
    }  

    public void update(Display display) { 
        display.print(0, 
               "L Wheel: " + mLeftWheelInput.sample()); 
        display.print(1,  
               "R Wheel: " + mRightWheelInput.sample()); 
    } 
}  

As you can see, the constructor of this class has two arguments, which are the 
AnalogInput objects corresponding to the left and right wheel sensors.  The 
update method uses these objects to sample the sensors before it prints the 
sampled values to the display.  

In order to incorporate the new screen into your program, insert the following line 
into the list of screens in the MyBot class:  

new WheelSensorScreen(leftWheelInput, rightWheelInput),  

Once you have done this, you can test the sensors by downloading and running 
your program.  After you have started the program, press the STOP button 
repeatedly to select the Do Nothing function.  Then press the START button.  
Rotate the thumbwheel until the new screen appears, displaying values sampled 
from the sensors.  Now turn one of the robot s wheels slowly with your hand and 
observe how the sampled value changes as the spokes and holes pass by the 
sensor. 



Creating Shaft Encoders for Wheel Position Sensing  5  

Copyright © 2005 RidgeSoft, LLC 

Understanding Analog-to-Digital Conversion 
The sample method uses the IntelliBrain controller s Analog-to-Digital converter 
to sample the current voltage at the analog signal pin.  The sensor s output signal 
is on the white wire, which attaches to the signal pin, which is the third pin from 
the edge of the IntelliBrain controller board.  

Each time your program invokes the sample method, the IntelliBrain controller s 
A-to-D converter samples the voltage on the signal pin.  The A-to-D converter 
converts the analog voltage to a digital value.  The sample method returns this 

value as an integer between 0 and 1023, inclusive.  The digital value is 
proportional to the voltage with 0 corresponding to 0 volts and 1023 
corresponding to 5 volts.  Therefore, the sample method will return a value of 512 
when the signal is at 2.5 volts.  The A-to-D converter is not able to measure 
voltages outside of the 0 to 5 volt range. 

Collecting and Analyzing Sensor Data 
Your next step is to gain a better understanding of using the sensors to track 
motion of the wheels.  You can do this by plotting a graph of the sensor output as 
the wheel turns under the power of the servo motor.  You will need to add a new 
test function to your program that collects periodic samples of a sensor s signal 
and then prints the data so you can plot a graph of the signal.  

Using RoboJDE, create a new class named TestEncoder.   This class will need 
to implement the Runnable interface, as follows:  

public class TestEncoder implements Runnable  

The Runnable interface requires that the class implement a method named run.  
This method will implement the data collection and reporting functionality 
discussed previously.  Enter the following code for the run method:  

public void run() { 
    mServo.setPosition(100); 
    try { 
        Thread.sleep(500); 
    } catch (InterruptedException e) {}  

    int[] samples = new int[100]; 
    long nextTime = System.currentTimeMillis(); 
    for(int i = 0; i < samples.length; ++i) { 
        samples[i] = mEncoderInput.sample(); 
        nextTime += 5; 
        try { 
            Thread.sleep(nextTime - System.currentTimeMillis()); 
        } catch (InterruptedException e) {} 
    }  

    mServo.setPosition(50); 
    while (!mButton.isPressed()); 
    for (int i = 0; i < samples.length; ++i) { 



Creating Shaft Encoders for Wheel Position Sensing  6  

Copyright © 2005 RidgeSoft, LLC 

            System.out.println( 
    Integer.toString(i * 5) + '\t' + samples[i]); 

    } 
}  

This method first applies full power to the servo motor.  Then it instructs the 
executing thread to sleep for 500 milliseconds, giving the wheel a chance to 
accelerate to full speed.  Following this it loops, repeatedly sampling the sensor 
signal and sleeping for 5 milliseconds.  Once the sample array is full, after 100 
samples, it stops the servo and waits for the START button to be pressed.  After 
the START button is pressed the method will continue and execute a loop that 
prints the data to System.out, which outputs to both the LCD screen and the 
RoboJDE Run window.  

In addition to the run method, the TestEncoder class will need a few member 
variables, a constructor and a toString method, as follows:  

private PushButton mButton; 
private Servo mServo; 
private AnalogInput mEncoderInput; 
     
public TestEncoder(AnalogInput encoderInput, 
                    Servo servo, 
                    PushButton button) { 
    mEncoderInput = encoderInput; 
    mServo = servo; 
    mButton = button; 
}  

public String toString() { 
    return "Test Encoder"; 
}  

This class will also need to declare several imports:  

import com.ridgesoft.robotics.AnalogInput; 
import com.ridgesoft.robotics.PushButton; 
import com.ridgesoft.robotics.Servo;  

Once you have added this code, add a line just above the reference to the 
DoBeep function in the MyBot class to construct a TestEncoder, as follows:  

new TestEncoder(leftWheelInput, leftServo, startButton),  

You will also need to add two lines to get the servo objects:  

Servo leftServo = IntelliBrain.getServo(1); 
Servo rightServo = IntelliBrain.getServo(2);  

Place these lines further up in the main function, just after the lines referring to 
getAnalogInput.  



Creating Shaft Encoders for Wheel Position Sensing  7  

Copyright © 2005 RidgeSoft, LLC 

Finally, add an import statement for the Servo class:  

import com.ridgesoft.robotics.Servo;  

Now build the program and download it to your robot.  Hold the robot in your 
hand or situate it such that the wheels are suspended above the table top.  This 
will ensure your robot does not run off the table when the wheel starts turning.    

Start the program running. Then select the Test Encoder  function using the 
STOP button to toggle through the available functions and the START button to 
make your selection.  When the wheel stops, press the START button.  The 
samples your program collected will print to the RoboJDE Run window.  Plot this 
data by hand or import it into a spreadsheet program to use your computer to plot 
it.  Your graph should be similar to the chart shown in Figure 3.  

Recalling from the earlier 
discussion of the operation of the 
QRB1134 photo-reflector, the 
sampled value is low when a spoke 
is in front of the sensor and high 
when a hole in the wheel is in front 
of the sensor.  The rising and 
falling edges of the signal 
correspond to the edges of the 
spokes.    

By examining the graph, you will 
note the time between rising edges 
is roughly 150 milliseconds.  This is 
the time for one full hole and one full spoke to pass in front of the sensor, which 
corresponds to one eighth of a revolution of the wheel.  Multiplying by eight, it 
takes approximately 1.2 seconds for the wheel to rotate one revolution.  
Considering the servo was at full power and the wheel was spinning freely, this is 
the top speed of the wheel, approximately 50 revolutions per minute.    

It is important to note there are twice as many spoke edges as there are spokes.  
Therefore, by sensing the edges of the spokes, rather than the spokes 
themselves, your program can sense the wheel position with twice the accuracy, 
measuring the wheel position to one sixteenth of a revolution.  Your program can 
easily detect spoke edges by detecting the sensor signal transitions from low to 
high and high to low.  

In order for your program to detect every spoke and every hole it must sample 
the sensor at least twice during the period it takes for a spoke and a hole to pass 
by the sensor.  That is, two samples per one eighth turn of the wheel.  If your 
program samples at a lower rate than this, it will miss some spokes or holes, 
making it unable to reliably track the position of the wheel.  Therefore, since it 

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 400 450 500

Time (milliseconds)

S
am

p
le

d 
V

al
u

e

Figure 3 - Sampled Wheel Sensor Data 



Creating Shaft Encoders for Wheel Position Sensing  8  

Copyright © 2005 RidgeSoft, LLC 

takes 150 milliseconds for the wheel to rotate one eighth of a revolution at full 
speed, your program must sample the sensor at least once every 75 
milliseconds.  This will ensure it detects every spoke and every hole.  However, 
there is a downside to sampling too frequently.    

If your program samples too frequently, it will expend more computing power 
than is necessary to effectively track the position of the wheels, leaving less 
computing power available for other tasks that bolster your robot s intelligence. 

Shaft Encoding 
Now that you are familiar with interfacing your software with photo-reflector 
sensors, your next step is to implement a shaft encoder class that keeps track of 
the position of a wheel using one of these sensors.  

Shaft encoding is a method of tracking the angular position and or/velocity of a 
rotating shaft, which in this case is the position of a wheel attached to the output 
shaft of a servo motor.  Shaft encoders are very popular and widely used.  They 
are commonly used in odometers, speedometers and tachometers on cars, 
motorcycles and bicycles.  Anytime you need to sense the position or velocity of 
an axle or wheel you should consider the option of using a shaft encoder.  

As its name suggests, a shaft encoder encodes the position of a shaft.  Although, 
shaft encoding sounds sophisticated, it is, in fact, quite simple.  The shaft 
encoder you will implement is simply a counter that counts up as the wheel 
rotates forward and counts down as the wheel rotates backwards.  The counter 
records one count, or click, each time the shaft rotates a fraction of a revolution.  
In the case of your robot, the passage of each spoke edge constitutes a click 
that your encoder will count.  

An interesting form of an encoder that really does make a clicking sound is that 
of a playing card attached to a bicycle such that it clicks as the wheel turns.  You 
may have added one of these encoders

 

to your bicycle when you were a child.  
The playing card makes a clicking sound each time a spoke snaps past the card.  
The sound made by the card changes as the speed of the wheel changes.  Just 
by listening to the clicking sound coming from this encoder you can tell how fast 
the wheel is turning.  

Instead of using a playing card to generate clicks, your robot s shaft encoder 
uses a photo-reflector sensor to generate the electronic equivalent of clicks.  The 
passage of each spoke edge results in a low to high or high to low signal 
transition, which constitutes a click of the encoder.  Interestingly, if you attached 
the photo-reflector output to an amplifier and a speaker, you would hear clicking 
just like you do when a playing card snaps across the spokes of a bicycle wheel. 



Creating Shaft Encoders for Wheel Position Sensing  9  

Copyright © 2005 RidgeSoft, LLC 

Creating an AnalogShaftEncoder Class 
You now have the basic information you need to implement your own shaft 
encoder class.  Your program will need to use two instances of this class, one for 
each wheel on your robot.    

You must implement the class such that it can predictably sample its sensor at 
least every 75 milliseconds, regardless of other tasks your program performs.  
This will be easy to accomplish by making use of Java s multi-threading 
capability.  All you need to do is create a new class  AnalogShaftEncoder 

 

which is a subclass of the Thread class.  Each instance of this class will have its 
own thread to monitor the photo-reflector.    

Go ahead and create the AnalogShaftEncoder class.  Modify the class definition 
such that the AnalogShaftEncoder class extends the Thread class and 
implements two interfaces, ShaftEncoder and DirectionListener, as follows:  

public class AnalogShaftEncoder extends Thread 
        implements ShaftEncoder, DirectionListener  

The ShaftEncoder interface is defined by RoboJDE.  It is a good idea for your 
class to implement this interface.  This will allow your new class to interoperate 
with other software that is written to use the ShaftEncoder interface.  It will also 
provide you the option of easily modifying your program to use higher precision 
quadrature shaft encoders, such as Nubotics WheelWatcher WW-01 encoders.  

The DirectionListener interface is a new interface that you must create.  By 
implementing this interface, the AnalogShaftEncoder class will be able to listen 
for changes in the direction of the motor.  As you extend your robot s control 
program, you will use this interface to inform the encoder of the direction the 
motor is being powered, forward or reverse.  This will let the encoder know 
whether it should count up or count down.  Use RoboJDE to create a new class 
named DirectionListener consisting of the following code:  

public interface DirectionListener { 
    public void updateDirection(boolean isForward); 
}  

The AnalogShaftEncoder class will need a number of member variables to 
manage its data.  Add the following variables to the class:  

private AnalogInput mInput; 
private int mLowThreshold; 
private int mHighThreshold; 
private boolean mIsForward; 
private int mCounts; 
private int mPeriod;  

This class will also need the following imports: 



Creating Shaft Encoders for Wheel Position Sensing  10  

Copyright © 2005 RidgeSoft, LLC 

import com.ridgesoft.robotics.AnalogInput; 
import com.ridgesoft.robotics.ShaftEncoder;  

The DirectionListener interface requires that the implementing class, in this case 
AnalogShaftEncoder, implement the updateDirection method.  Add the following 
method for this purpose:  

public void updateDirection(boolean isForward) { 
    mIsForward = isForward; 
}  

Similarly, the ShaftEncoder interface requires getCounts and getRate methods:  

public int getRate() { 
    return 0; // rate calculation not supported 
}  

public int getCounts() { 
    return mCounts; 
}  

Note: The full implementation of the getRate method is left as an exercise.  

The run method of the AnalogShaftEncoder will need to loop forever, checking if 
the edge of a spoke has passed by the sensor since the previous check.  After 
each check, the thread will need to sleep to allow other threads to execute.  The 
longer the thread sleeps, the less CPU time it will consume, but if it sleeps too 
long it will miss spoke edges.  It will also be a good idea to enclose all of the 
code in the run method in a try-catch block to catch and report any errors that 
occur.  You don t expect there to be any errors, but if there is a problem with your 
code it will be much easier to debug if it prints out a stack trace rather than just 
terminating the thread silently.    

Use the following code for the overall structure of the run method:  

public void run() { 
    try { 
        // take initial sensor sample 
            : 
        while (true) { 
            // sample the sensor and count 
            // spoke edges 
                : 
            Thread.sleep(mPeriod); 
        } 
    } 
    catch (Throwable t) { 
        t.printStackTrace(); 
    } 
} 



Creating Shaft Encoders for Wheel Position Sensing  11  

Copyright © 2005 RidgeSoft, LLC 

The first thing the method will need to do is take an initial sample of the sensor to 
determine if the signal is high or low, as follows:  

boolean wasHigh = false; 
if (mInput.sample() > mLowThreshold) 
    wasHigh = true;  

Add these lines below the take initial sample comment.  

In order to count spoke edges, the run method will need to keep track of whether 
the sensor signal was high or low on the previous check.  Each time the code 
detects a transition between low and high it will record a click by adjusting the 
counter.  The following code implements this:  

int value = mInput.sample(); 
if (wasHigh) { 
    if (value < mLowThreshold) { 
        if (mIsForward) 
            mCounts++; 
        else 
            mCounts--; 
        wasHigh = false; 
    } 
} 
else { 
    if (value > mHighThreshold) { 
        if (mIsForward) 
            mCounts++; 
        else 
            mCounts--; 
        wasHigh = true; 
    } 
}  

Add these lines in the while loop.  

The low and high thresholds make the state of the wasHigh variable sticky  that 
is, they add hysteresis.  The state will only change with large swings in the 
sampled value, making the encoder less susceptible to signal noise that would 
cause false counting.  

Lastly, your AnalogShaftEncoder class will need a constructor to initialize new 
instances of the class when they are created:  

public AnalogShaftEncoder(AnalogInput input, 
                          int lowThreshold, 
                          int highThreshold, 
                          int period, 
                          int threadPriority) { 
    mInput = input; 
    mLowThreshold = lowThreshold; 
    mHighThreshold = highThreshold; 



Creating Shaft Encoders for Wheel Position Sensing  12  

Copyright © 2005 RidgeSoft, LLC 

    mPeriod = period; 
    mIsForward = true; 
    mCounts = 0; 
    setPriority(threadPriority); 
    setDaemon(true); 
    start(); 
} 

Testing the Encoder 
As a final step, you will need to add a screen that will allow you to view both 
encoder counters.  This will permit you to test your encoders.  Create the 
EncoderCountsScreen class to serve this purpose:  

import com.ridgesoft.io.Display; 
import com.ridgesoft.robotics.ShaftEncoder;  

public class EncoderCountsScreen implements Screen { 
    private ShaftEncoder mLeftEncoder; 
    private ShaftEncoder mRightEncoder; 
     
    public EncoderCountsScreen(ShaftEncoder leftEncoder, 
                            ShaftEncoder rightEncoder) { 
        mLeftEncoder = leftEncoder; 
        mRightEncoder = rightEncoder; 
    } 
     
    public void update(Display display) {   

int leftCounts = mLeftEncoder.getCounts();   
int rightCounts = mRightEncoder.getCounts();   
display.print(0, "L enc: " + leftCounts);   
display.print(1, "R enc: " + rightCounts); 

    } 
}  

You will also need to update your main class, MyBot, to put the new classes to 
use.  Add the following lines to the main method just after the servo lines you 
added previously:  

ShaftEncoder leftEncoder = new AnalogShaftEncoder( 
                  leftWheelInput, 250, 750, 30, 
                        Thread.MAX_PRIORITY); 
ShaftEncoder rightEncoder = new AnalogShaftEncoder( 
                  rightWheelInput, 250, 750, 30, 
                        Thread.MAX_PRIORITY);  

These lines create both encoders, initializing them with a low threshold of 250, a 
high threshold of 750, a sample period of 30 milliseconds and maximum thread 
priority.  Setting the thread priority to the maximum will ensure other tasks don t 
interfere with sampling the sensors.  

Finally, add the EncoderCountsScreen to the screen list:  



Creating Shaft Encoders for Wheel Position Sensing  13  

Copyright © 2005 RidgeSoft, LLC 

new EncoderCountsScreen(leftEncoder, rightEncoder),  

You can now build, download and test your encoders.  Once you have 
downloaded the program, select the Do Nothing  function, start the program, 
turn the thumbwheel to select the EncoderCountsScreen and then gently turn 
one of your robot s wheels with your hand.  Notice the encoder counter will 
increase as you turn the wheel.    

The counter will always increment regardless of the direction you turn the wheel.  
It will not decrement when you turn the wheel backwards.  This happens because 
you are turning the wheel manually and, therefore, the AnalogEncoderClass has 
no way of knowing which way the wheel is turning.  As you implement code to 
use the servo motors to power the wheels, you will use the updateDirection 
method to provide the AnalogEncoderClass with the information it needs to 
determine if it should count up or count down for each click. 

Conclusion 
You have now created a simple shaft encoder class that uses an infrared photo-
reflector sensor to sense and count spoke edges as a wheel turns.  With 
additional programming you can use two instances of this class to enable your 
robot to track its location and to navigate to specific locations. 

Exercises 
1. Using the WheelSensorScreen, observe the digital values sampled from 

both wheel sensors.  Gently turn one of your robot s wheels with your 
hand.  Record the minimum and maximum digital value you observe from 
that wheel s sensor.  Also, make note if the sensor is adjacent to a hole or 
a spoke when you observe the minimum and maximum values.  What are 
the signal voltages corresponding to these values? 

2. Draw a graph showing the integer value the IntelliBrain controller s A-to-D 
converter will return for signal voltages between 0 and 5 volts. 

3. Draw a graph showing how you expect the digital value sampled from the 
sensor to vary over one revolution of the wheel.  How many spokes will 
pass in front of the sensor?  How many holes will pass in front of the 
sensor?  How many spoke edges will pass in front of the sensor? 

4. Modify the TestEncoder class to apply less power to the servo by 
specifying 55 instead of 100 for the position parameter when invoking the 
setPosition method.  Collect and plot the data for both full power and the 
new power level.  What effect does changing the power have?  How many 
revolutions per minute does the wheel turn at each power level? 

5. Add another test function to your program to make your robot move 
straight forward until both encoders have counted 100 counts. 

6. Using the test function from the previous exercise, experiment with the 
sampling frequency of your encoders.  What happens if you sample at too 
low a frequency?  What happens if you sample at too high a frequency? 



Creating Shaft Encoders for Wheel Position Sensing  14  

Copyright © 2005 RidgeSoft, LLC 

7. Complete the implementation of the AnalogShaftEncoder.getRate method 
such that is returns a meaningful value.  One way to do this is to keep 
another counter that resets at a specified period.  Just prior to resetting 
the counter, copy it to a member variable that holds the recent rate value.  
The getRate method can then return this variable as the measure of the 
rate.  Hint:  It will be easier to implement this if you chose to calculate the 
rate over a whole number of sample periods.  This will allow you to use 
the existing timing mechanism incorporated in the run method. 

8. Substitute WheelWatcher WW-01 quadrature shaft encoder sensors from 
Nubotics (www.nubotics.com) for the encoders you created.  These 
encoders will provide greater precision than the encoders you created in 
this tutorial, improving the accuracy of your robot.                                         

Copyright © 2005 by RidgeSoft, LLC.  All rights reserved.  

RidgeSoft , RoboJDE and IntelliBrain are trademarks of RidgeSoft, LLC.  

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States 
and other countries. All other brand or product names are trademarks of their respective owners.  

RidgeSoft, LLC 
PO Box 482 
Pleasanton, CA  94566 
www.ridgesoft.com

  


